SUPERNOVA NEUTRINOS SEARCH WITH LVD - A 30 YEARS LEGACY

C. Vigorito University & INFN Torino, Italy

On behalf of the LVD Collaboration

SNvD 2023@LNGS

International conference on Supernova Neutrino Detection May 29th to June 1st, 2023 **Gran Sasso National Laboratory** Assergi, L'Aquila [Italy]

C.Vigorito @ SNvD - LNGS 30th May 2023

The outline

- A bit of history of LVD
- The Detector Performances
- The Strategy to catch SN Neutrinos
- •The Expected Signal & Detector Sensitivity
- Data & Results
- Summary

C.Vigorito @ SNvD - LNGS 30th May 2023

N Neutrinos etector Sensitivity

The Large Volume Detector

Heir of LSD

International collaboration since 1986 26 Institutions and 6 countries USA,USSR,Brazil,China, Japan and Italy

Astrophysical observatory @LNGS since 1992

Once upon a time....

The Large-Volume Detector (LVD) of the Gran Sasso Laboratory.

Summary. — We describe here the LVD experiment (Large-Volume Detector) of the Gran Sasso Laboratory, which is the natural improvenent of the LSD experiment (Liquid Scintillation Detector) running in he Mont Blanc Laboratory. The LVD $((31 \times 13) \text{ m}^2 \text{ area, height } 12 \text{ m})$ consists of ~ 1800 tons of liquid scintillator and of a system of streamer tubes on 5 layers for reconstructing tracks of charged particles. As any of events and requires long running times, the LVD is a multipurpose experiment but with different priorities of the researches. The main goal is neutrino astronomy, firstly detection of neutrinos from collapsing and secondly high-energy neutrinos and solar neutrinos. Simi spected number of interactions of neutrinos from a stellar colla y high (of order of 900 for a collapse at the distance of the galacon), the LVD is, contrary to the present experiments, a real neutrino observatory, able to make a detailed analysis of the energy and temporal distributions of the burst. In addition to neutrino astrophysics, with the LVD experiment excellent possibilities exist to perform researches in cosmic-ray and high-energy elementary-particle physics.

experiment in an underground laboratory, which has a low statistics

PACS. 94.40. – Cosmic rays.

Liquid scintillator 1.8 ktor Streamer tubes layers

SN Neutrino Astronomy et al.

Scaled from LSD $20 \times$

Real time DAQ

Designed to be Robust, Reliable & Long Duration

The Experiment Timeline

C.Vigorito @ SNvD - LNGS 30th May 2023

The LVD Modularity At Glance

The Counter

Mounting LVD in hall A, early in the 90s

The Detector

TheTower

The Module

The LVD Features

- $|x|x|.5 \text{ m}^{3}$, 1.2 t with 3 (15 cm) PMTs
- 50% trigger efficiency @ 4 MeV
- I5% energy resolution @ I0 MeV
- 50% n-capture efficiency

C.Vigorito @ SNvD - LNGS 30th May 2023

The running detector:

- 1000 t of liquid scintillator (C_nH_{2n+2}, n~9.6) & 800 t of iron in the structure
- 840 active counters & 72 passive counters (ex LSD) on the upper most layer added in 2001

<u>The Front-End Electronics :</u> 2520 ADC/TDC Channels

- Dead time on single channel | µs
- $\Delta t_{abs} = 100 \text{ ns} (GPS)$
- $\Delta t_{rel} = 12.5 \text{ ns} (TDC)$

The LVD Trigger

Strategy optimised for the double signature of the IBD $\bar{\nu}_e + p \rightarrow e^+ + n$

L0 trigger in LVD: 3-fold coincidence of counters PMTs above the main threshold enables the read-out.

2 threshold levels: E_H~4 MeV (L0 trigger) $E_L \sim 0.5$ MeV for I ms after the L0

"machine learning" DAQ guarantees the maximal duty cycle. Start & Stop of the run occurs very rarely in LVD.

The LVD Remote Manager

Failures of the system components are automatically notified in real time via email and SMS to system responsible/shifter SOS

C.Vigorito @ SNvD - LNGS 30th May 2023

On-line since 2001: DAQ Status Control HV Monitor Run infos

Lvd Daq Status Compact Version at 15/May/2023 10:03:25

EVENT BUILDER STATE IS BLDDATA

DAQ						Rate (ev/min)			
te	Builder	Active Mass (t)	Q1	Q2	Q3	Q4	Total	Last 3 min	Muons
Έ	CONNECTED	277.2	ON	ON	ON	ON	68.60	64.00	2.1
Έ	CONNECTED	304.8	ON	ON	ON	ON	197.59	184.67	2.5
Έ	CONNECTED	272.4	ON	ON	ON	ON	509.59	507.00	2.1

CURRENT RUN : 56931 (3229 EVENTS STORED) ORIGINAL RUN : 56095 (277536410 EVENTS STORED) STARTED ON: 22/Aug/2022 13:59:10 **AVERAGE RATE PER MINUTE SINCE START = 725.01 (SINCE LAST 3 MINUTES = 755.67)** ----> LAST EVENT WRITTEN 0.000000 SECONDS AGO <--------> Mbytes FREE ON DATA DISK: 782628.12 (HOME: 782628.12) <----

chronize							
l	Q2	Q3	Q4				
1	ON	ON	ON				
J	ON	ON	ON				
J	ON	ON	ON				

All DAQ processes are ON (14 sec ago).

Today and yesterday log files don't have any Error message.

Some tanks (2) are set OFF via software. See which one.

Sci_monitor is working on run 56931

By the on-line analysis neutrino & muon-like events are sorted!

Muon & Energy Calibration

Muon-like events in LVD selected by the time coincidence ($\Delta t = 175$ ns) of triggers in at least 2 different counters

Fully automatised procedure

C.Vigorito @ SNvD - LNGS 30th May 2023

CR muons in LVD(E > | TeV): Muon rate: $R_{\mu} = 0.097 \pm 0.010 \ s^{-1}$ Muon rate per counter: $f_{\mu} \sim 50 \ day^{-1}$

Counter calibration frequency: I/ month Mean energy deposit: $185 \pm 5 MeV$

LVD Performances

Modularity provides high duty cycle > 99.5 % since 2001 Maintenance guarantees the quality of active mass over the years

C.Vigorito @ SNvD - LNGS 30th May 2023

Neutrino-like Trigger Rate Neutrino pulse in LVD = All signals surviving the muon selection

C.Vigorito @ SNvD - LNGS 30th May 2023

LI(7 MeV)~0.28 Hz LI(10 MeV)~0.03 Hz

Neutrino-like Trigger Rate

• Last update: 6/1992-2/2023

C.Vigorito @ SNvD - LNGS 30th May 2023

LI(I0) Trigger - Time Delay

13

The Detector Ageing

K=Average calibration constant over all $K_0 =$ Reference value at Jan. 2007

Global ageing: (0.5-0.75) %/year (Scintillator, Photosensor, Electronics)

Search for SN Neutrino Burst with LVD Three Steps Process

SI) Searching for clusters of events within the expected time window $\Delta t / A$ cluster is a doublet: (M, Δt)

S2) Defining a ccSN candidate looking at the cluster statistical significance

The Imitation Frequency

S3) Check the consistency of selected candidate with the expected ccSN signal in the detector

C.Vigorito @ SNvD - LNGS 30th May 2023

Trigger pulse vs Time

One strategy /Two Methods:

MI) **On-line** with fixed time window $\Delta t=20$ s PROs: Fast & Reliable CONs: more model dependent

> Real time / Prompt alert dissemination within minutes (Stand-alone and SNEWS network)

Astro Particle Ph., 28, 516 (2008)

M2) **Off-line** with variable time window $\Delta t < 100$ s PROs: less model dependent CONs: Time consuming

Best sensitivity with source distance

ApJ, 802, 47 (2015) NIMPA, 368, 512 (1996)

C.Vigorito @ SNvD - LNGS 30th May 2023

Marginal use of the emission model in both methods

Model needed for performance estimate

The On-line Selection

Each data period T is scanned in "sliding" mode" |S|)

- •Sampling time: $\Delta t = 20 \text{ s} / 10 \text{ s}$ overlap
- N.of trials depends on T
- $M_{cluster}$: Triggers @ $E > E_H$
- f_{bk} : Background rate @ $E > E_H$

Cluster Imitation Frequency

$$F_{\rm im}(m, f_{\rm bk}, 20 \text{ s}) = 8640 \cdot \sum_{k \ge m}^{\infty} P\left(k; 20 \cdot \frac{f_{\rm bk}}{s^{-1}}\right) \text{ event dag}$$

Alert candidate

 $F_{im} \le 1/100 \text{ y}^{-1}$ LVD Standalone $F_{im} \leq 1 month^{-1}$ **LVD** in **SNEWS**

On-line LVD Alerts to SNEWS

Start: July Ist 2005

C.Vigorito @ SNvD - LNGS 30th May 2023

A total of 177 Alerts, in average ~10/y

The Off-line Selection

- δt
- Cluster time: variable $\delta t < 100 s$
- $M_{cluster} m_i \ge 2$
- f_{bk} : Background rate @ $E > E_H$
- N.of trials depends on f_{bk}

 $F_{\rm im_i} =$

C.Vigorito @ SNvD - LNGS 30th May 2023

Cluster Imitation Frequency

$$= f_{bk}^2 \Delta t_{\max} \sum_{k \ge m_i - 2} P\left(k, f_{bk} \Delta t_i\right)$$

Alert candidate $F_{im_i} \leq 1/100 \ y^{-1}$ LVD Standalone $F_{im_i} \leq 1 \ day^{-1}, 1 \ week^{-1}, 1 \ month^{-1}$ Monitoring the tool

Monitoring the Off-line Selection

LVD data:

• Last update: 6/1992-2/2023

Alert Time Delay

C.Vigorito @ SNvD - LNGS 30th May 2023

Algorithm stable & reliable over long time

Consistency Checks

Looking at foot prints of real neutrino burst :

C.Vigorito @ SNvD - LNGS 30th May 2023

Time delay ($\Delta t \sim 185 \ \mu s$) and multiplicity of n-captures in the gate

Entropy (Uniformity)

The LVD Expected Signal

Estimated by:

Modelling the neutrino flux for core collapse SN (ccSN) Standard ccSN as in Pagliaroli et al. / Based on SN1987A observations Aph, 31, 163 (2009)

+Oscillation effects

+Detector response function

C.Vigorito @ SNvD - LNGS 30th May 2023

SN neutrino search with LVD

KpC \bigcirc 8 signal SZ Expected

Neutrino interaction channels	Expected events	
<i>v</i> _e + <i>p</i> -> e⁺+ <i>n</i>	250	
v _e + ¹² C -> ¹² N+e ⁻		
$\overline{v}_{e}^{+12}C \rightarrow {}^{12}B^{+}e^{+}$	15	
$v_i^{+12}C \rightarrow v_i^{+12}C^{+\gamma}$		
<i>v_i</i> +e ⁻ -> <i>v_i</i> +e ⁻	10	
v _e + ⁵⁶ Fe -> ⁵⁶ Co+e ⁻		
v _e +56Fe -> 56Mn+e+	25	
v_i + ⁵⁶ Fe -> v_i + ⁵⁶ Fe+ γ		1
Total	300	

ν Interaction Channel	E_{ν} Threshold	%
$\bar{\nu}_e + p \rightarrow e^+ + n$	(1.8 MeV)	(88%)
$\nu_{\rm e}$ + ¹² C \rightarrow^{12} N + e ⁻	(17.3 MeV)	(1.5%)
$\bar{\nu}_{e} + {}^{12} \mathrm{C} \rightarrow {}^{12} \mathrm{B} + \mathrm{e}^{+}$	(14.4 MeV)	(1.0%)
$ u_{\mathrm{i}} \ +^{12}\mathrm{C} ightarrow u_{\mathrm{i}} \ +^{12}\mathrm{C}^{*} + \gamma$	(15.1 MeV)	(2.0%)
$ u_{\mathrm{i}} + \mathrm{e}^- ightarrow u_{\mathrm{i}} + \mathrm{e}^-$	(-)	(3.0%)
$\nu_{\rm e}$ + ⁵⁶ Fe \rightarrow ⁵⁶ Co* + e ⁻	(10. MeV)	(3.0%)
$\bar{\nu}_e + F^{56} Fe \rightarrow Mn + e^+$	(12.5 MeV)	(0.5%)
$\nu_{\rm i}$ + ⁵⁶ Fe $\rightarrow \nu_{\rm i}$ + ⁵⁶ Fe* + γ	(15. MeV)	(2.0%)

From model to model the number of IBD events may change a little but..... the overall picture do not change!

The LVD Sensitivity

Conservative: Only IBD channel without double signature

C.Vigorito @ SNvD - LNGS 30th May 2023

Global LVD Results

Data set: 6/1992-2/2023 (last update) Average Duty cycle: 95.5 % Average Mass: 770 t Exposure: 22.1 kt x year Lifetime: 10673 days / 29.4 years

LI(10) Triggers: 19.7 Millions N. of Clusters: 4.14 Millions

C.Vigorito @ SNvD - LNGS 30th May 2023

How do these clusters behave?

Cluster details I

C.Vigorito @ SNvD - LNGS 30th May 2023

Multiplicity vs Δt

Cluster details II

C.Vigorito @ SNvD - LNGS 30th May 2023

Fim vs time

l/year

l/month

I/week

1/day

Cluster details 11

Clusters selected with the offline analysis are not necessarily sent as Alerts to SNEWS. In the common period 4 has $F_{im} < 1/y$: one sent to SNEWS

Year

C.Vigorito @ SNvD - LNGS 30th May 2023

Fim vs time

l/year

I/month

I/week

1/day

Results 1992-2023

n.	UTC	$M_{act}[t]$	$\mathbf{f}_{bk}[s^{-1}]$	$\mathrm{D}_{90\%}[kpc]$	m	$\Delta t[s]$	$\mathbf{F}_{im}^{-1}[years]$	$\bar{E}_{signal}[MeV]$
1	1994 16 April 10:40:49.263	346	$1.08 \cdot 10^{-2}$	29.5	7	18.88	1.06	26.5
2	1995 27 August 16:18:10.478	431	$1.85 \cdot 10^{-2}$	35.0	7	5.49	11.16	36.2
3	1998 7 October 15:41:41.775	552	$1.40 \cdot 10^{-2}$	30.6	12	90.05	1.76	32.2
4	2009 18 July 7:39:20.517	976	$2.40 \cdot 10^{-2}$	40.4	12	42.71	4.02	14.6
5	2014 25 May 3:54:14.555	959	$2.78 \cdot 10^{-2}$	36.8	14	61.56	1.49	22.6
6	2014 18 December $20:21:28.787$	937	$2.33 \cdot 10^{-2}$	45.9	8	9.98	3.22	18.8
7	2021 23 December 00:39:00.279	863	$2.55 \cdot 10^{-2}$	38.1	14	68.75	1.42	19.0

No evidence of SN v signals in LVD Upper limit 0.08 event /year 90% c.l.

C.Vigorito @ SNvD - LNGS 30th May 2023

Individually checked Compatible with background fluctuation

Muon Series Analysis

The longest µ time series

C.Vigorito @ SNvD - LNGS 30th May 2023

 $I_{\mu}^{0} = (3.35 \pm 0.0005^{stat} \pm 0.03^{sys}) \times 10^{-4} m^{-2} s^{-1}$

Exploration of the stratosphere with cosmic-ray muons detected underground

C. Taricco^{1,*} E. Arnone,¹ S. Rubinetti,² and I. Bizzarri¹

¹Department of Physics, University of Turin and Istituto Nazionale di Fisica Nucleare (INFN), Turin, Italy ²Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy

N. Yu. Agafonova,¹ M. Aglietta,^{2,3} P. Antonioli,⁴ V. V. Ashikhmin,¹ G. Bari,⁴ G. Bruno,^{5,6} E. A. Dobrynina,¹ R. I. Enikeev,¹ W. Fulgione,^{5,3} P. Galeotti,^{2,3} M. Garbini,^{4,7} P. L. Ghia,⁸ P. Giusti,⁴ E. Kemp,⁹ A. S. Malgin,^{1,†} A. Molinario,^{2,3} R. Persiani,⁴ I. A. Pless,¹⁰ O. G. Ryazhskaya,^{1,†} G. Sartorelli,⁴ I. R. Shakiryanova,¹ M. Selvi,⁴ G. C. Trinchero,^{2,3} C. F. Vigorito,² V. F. Yakushev,¹ and A. Zichichi^{4,7} (LVD Collaboration)

C.Vigorito @ SNvD - LNGS 30th May 2023

Beyond the standard Fourier approach with advanced spectral-analysis methods

Conclusions

31 years data taking

Prompt alert to SNEWS since 2005

SN neutrinos: best upper limit for the Milky Way survey

C.Vigorito @ SNvD - LNGS 30th May 2023

A summary paper in preparation

31

Some of the scientists who imagined, realised and contributed to the LVD experiment are not with us anymore. We are left with their memory and their teachings.

