

Supernovae at SNO+

J Tseng 30 May 2023 SNvD @ LNGS

SNA

Outline

- SNO+ status
- Supernova response
- Supernova trigger
- Pre-supernova monitoring
- Pointing with electron elastic scatters
- Conclusion

SNO+

JINST 16 (2021) 08, P08059

Acrylic vessel 6m radius

- 780T LAB+PPO

~9400 PMT's ⁄ at 9m radius incl ~90 outward-looking

8" Hamamatsu R1408 + 27cm-diameter concentrator

J Tseng, SN at SNO+ (30 May 2023)

SNO+

Ultra-pure water shielding

1.7kT AV-PMT

5.3kT PMT-cavity

8" Hamamatsu R1408 + 27cm-diameter concentrator

J Tseng, SN at SNO+ (30 May 2023)

SNO+ timeline

4	 Dec 2016: start commissioning with water
2016	 May 2017: start of water phase
2017 2019	⁸ B Solar neutrino flux: PRD 99 (2019) 012012 Invisible nucleon decay modes: PRD 99 (2019) 032008, PRD 105 (2022) 112012 Neutron-proton capture: PRC 102 (2020) 014002 Reactor neutrinos: PRL 130 (2023) 9
	 July 2019: start filling with scintillator (LAB+PPO fluor)
2022	 "Partial fill" phase due to pandemic: 365T LS, 0.6g/L PPO
2023	 April 2022: start of scintillator phase
	• 780T LS, 2.2g/L PPO
	 2023: preparation for Te loading for 0vββ phase
~	

SNO+ timeline

1 1 8 DI

4. 82

81 84

Full!

SNO+ physics

Neutrinoless double beta decay with ¹³⁰Te

Geo-neutrinos

NASA/ SDO

Solar v flux/shape

Reactor v

C Grant, Google Maps

Getty Images

SNO+ physics

- Supernovae
- Low-energy astrophysical neutrinos
- Dark matter / exotics

ESO/Schmidt

J Tseng, SN at SNO+ (30 May 2023)

Core-collapse supernova at SNO+

- SNO+ is "small" by standards of Super-Kamiokande, JUNO, etc
- One of the deepest \rightarrow low muon/cosmogenic backgrounds
- Independent location largest at SNOLAB
- May provide independent pointing information
- Additional pre-supernova monitoring

Muons at SNO+

Core-collapse supernova at SNO+

Model: 27M_☉ progenitor, LS220 EOS, 10kpc, full fill Geant4 MC

Yields: Andringa et al. (SNO+), 2015

J Tseng, SN at SNO+ (30 May 2023)

Burst trigger

- Near real-time burst trigger in operation
 - Coincidence of multiple highoccupancy (and IBD) events
 - 1-2s latency, <30s to analyze
 - Tunable thresholds, aim for ~1 alarm/month
- Supernova shifters on call 24/7
- Sending test alarms since 2022

detection – useful for background determination

Burst trigger

• "Nearly online" system produces diagnostics and plots (SNUGen)

Burst trigger sensitivity

Trigger efficiency vs supernova distance (only event coincidences, not IBD coincidence)

UNIVERSITY OF

ALMA/NAOJ/NRAO/E O'Gorman/P Kervella

Detector saturation vs SN model/distance

"The good news is Betelgeuse is still too far from Earth for the eventual explosion to have significant impact here." - Sci.News (2020) https://www.sci.news/astronomy/betelgeuse-size-distance-08957.html

Pre-supernova neutrino monitoring

• Status: finalizing details of nearline analysis

Sensitivity for background scenario:

- 110 reactor v/yr
- 25 geo ν/yr
- 275 (α,n)/yr
- Observed backgrounds lower
- What to send to SNEWS?
 - Combine statistical significances of each experiment
 - How often to update?

NIVERSITY OF

Pre-SN sensitivity (3σ) using a 12-hour window

A Odrzywolek et al., ACTA Physica Polonica B41 (2010) 1611; A Odrzywolek et al., Astropart Phys 21 (2004) 303; Candidate distribution: Mukhopadhyay et al., ApJ 899 (2020) 153

- Aim: point using electron elastic scattering events
 - In water, these leave characteristic Cherenkov ring
- Two possibilities at SNO+ with scintillator:
 - External water: 1.7kT between AV and PMT's

Challenging reconstruction with far off-center timing, optics \rightarrow used in other analyses, in progress for SN

• Disentangle Cherenkov and scintillation light

A crazy idea that *might* work

Cherenkov light cone emitted at earlier times compared with scintillation

J Tseng, SN at SNO+ (30 May 2023)

Simulated time residuals for solar neutrinos vs angle relative to Sun

- 2D likelihood fit in solar angle and time residuals
- Events above ~5 MeV should be dominated by solar neutrinos
 - Direction expected to be peaked in direction to Sun

INIVERSITY OF

- Partial fill (365T LS), 0.6g/L PPO
- 92 days livetime
- Potentially even better for SN neutrinos!
- Independent direction
 determination
- Note: study of pointing in external water also ongoing

Conclusion

- SNO+ scintillator data-taking started in April 2021
 - Nearline systems sending SNEWS "test" alarms since 2022
- Aim to send alarms to SNEWS2 in 2023
 - Further potential alarm content to be confirmed
 - Aim to contribute to pre-SN monitoring
 - May contribute to pointing with electron elastic scatters
- SNO+ is preparing for Te/ $0\nu\beta\beta$ phase
 - Supernova sensitivity not diminished!

