$SN\nu D 2023$

Mattia Fanì **Los Alamos National Laboratory**

On behalf of the DUNE Collaboration

Laboratori Nazionali del Gran Sasso

- The Deep Underground Neutrino Experiment (DUNE)
- Main detection technique
- DUNE Beam & Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

Detail of an Anode Plane Assembly in ProtoDUNE-HD at CERN

- The Deep Underground Neutrino Experiment (DUNE)
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

Schematic of DUNE design DUNE-TDR arXiv:1807.10334

The Deep Underground Neutrino Experiment

- A worldwide Collaboration: 1400+ people, 200+ institutions, 37 countries w/ CERN
- Long baseline experiment: 1300 km from Fermilab to SURF, 4300 m water equivalent depth
- The most intense neutrino beam ever: **1.2 MW**, upgradable to **2.4 MW**
- Two detectors, Near/Far, the largest liquid argon neutrino detector in the world (70 kt) 2 phases
- Detector prototypes (ProtoDUNE) already operational at CERN

Science goals

- Constrain flavor and mass models, search for the origin of matter, testing the three-flavors paradigm:
 - Precise neutrino oscillation parameters for $\nu_e/\bar{\nu}_e$ appearance, $\nu_\mu/\bar{\nu}_\mu$ disappearance searches, CP violation, mass hierarchy in the ν sector
- Learn about supernovae, neutron stars and black holes
 - DUNE alone would detect > 3x as many ν as all active detectors did for SN1987A
- Shed light on Grand Unified Theories (GUT), physics beyond the **Standard Model:**
 - Proton decay, baryon number violation, sterile neutrinos, non-standard interactions and more

[DUNE TDR Vol. 2: https://arxiv.org/pdf/2002.03005.pdf]

Image credit: Fermilab

30 May 2023

- The Deep Underground Neutrino **Experiment (DUNE)**
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

First detection of a neutrino event with a bubble chamber, 1970 Image credit: Argonne National Laboratory

Protón path

Neutrino transformed into <u>µ-meson</u>

Invisible neutrino collides with proton

Collision creates π -meson

60

Liquid Argon Time Projection Chamber (LArTPC)

- Rapid development over the last two decades
 - ICARUS, WA105, MicroBooNE, LArlat, ArgonCube, SBND, ProtoDUNE
- Charge from drifted electrons collected by wires; information on interaction time and triggering from LAr scintillation time
- Two possible working principles
 - Different e⁻ drift direction and detection technologies
 - Horizontal Drift (HD)
 - Vertical Drift (VD)

[DUNE TDR Vol 1: https://cds.cern.ch/record/2709272/files/pdf.pdf]

DUNE Imaging & Reconstruction

- Excellent track reconstruction: mm-resolution
- Clean separation of ν_{μ} and ν_{e} charged-currents

DUNE FD1-HD simulated 2.5 GeV_v

- Low detection thresholds for charged particles \rightarrow precise reconstruction of lepton and hadronic energy \rightarrow E_{ν} reconstruction over broad energy range

- The Deep Underground Neutrino **Experiment (DUNE)**
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

LBNF/DUNE excavation work Photo credit: Fermilab

The DUNE beam

Proton beam line

- Produce neutrino beam by focusing charged pions and allowing them to decay
- Can operate in neutrino and antineutrino modes

Proton Improvement Plan-II (PIP-II)

- Proton beam: 1.2 MW (phase-1), 2.4 MW (phase-2)
- Accelerated to 60-120 GeV by FNAL accelerator complex
- Bent down at 5.8° to reach Sanford
- Horns/beam line designed to maximize CP violation sensitivity

• Expected neutrino fluxes available:

- Neutrino-enhanced, Forward Horn Current (FHC),
- Antineutrino-enhanced, Reverse Horn Current (RHC)

On-axis wide band beam covering main oscillation features

[Eur. Phys. J. C 80 (2020) 10, 978]

Mattia Fanì | The Deep Underground Neutrino Experiment

DUNE Near/Far site facility status

• Far Detector (FD) site at SURF

- Deepest laboratory in the US: 1.5 km underground
- Excavation work: 64.3% of in-situ rock volume removed as of 15 May 2023
- Three main caverns:
 - 4 detector halls in 2 caverns
 - 1 utility cavern

Near Detector (ND) site at Fermilab

- 60 m underground, 574 m away from the neutrino source
- Near Detector Conceptual Design Report (CDR) now finalized and recently published

The DUNE Near Detector (ND)

- Independently constrain the cross section, flux, energy response, detector systematics
- Broad physics program
- Multiple complementary systems:
 - ND-LAr Liquid Argon TPC
 - Modular, pixel read-out
 - ND-GAr High Pressure Gas TPC
 - TMS The Muon Spectrometer
 - HP GAr TPC surrounded by ECal+magnet (Phase-2)
 - **SAND** on-axis beam monitor
 - Inner tracker surrounded by 100 t ECal, SC magnet (0.6 T)
 - On-axis beam monitor for beam spectrum/stability

PRISM

- ND-LAr and ND-GAr move up to 30 m off-axis
- Beam characterization dependent on the off-axis angle to minimize flux and cross section systematics

The DUNE Far Detector (FD)

- 4 Detector modules, ~17 kt each
- Single phase (SP) Liquid Argon Time Projection Chambers (LArTPC) - main detector technology
 - **FD #1**: SP LArTPC, Horizontal Drift (HD)
 - **FD #2**: SP LAr-TPC, Vertical Drift (VD) lacksquare
 - Cryostat installation starts mid-2020s
 - Expected to be operational end of 2020s \rightarrow DUNE science begins

Phase-2

- **FD #3**: SP LAr-TPC enhanced VD concept TBC
- **FD #4**: Ongoing R&D for Module of Opportunity

FD#1 - LAr-TPC Horizontal Drift Technology

• Alternated APA/CPA **Anode and Cathode Plane** Assemblies

- Segmented: 4 drift volumes, Drift distance: 3.6 m
- Electric field = 500 V/cm (HV = -180 kV)
- Anode: 150 APAs 4 wire planes each Grid, 2x Induction, Collection APA unit
- High-resistivity CPAs to prevent fast discharge
- Output Detectors: X-ARAPUCA light traps

[DUNE TDR, B. Abi et al 2020 JINST 15 T08010]

FD#2 - LAr-TPC Vertical Drift Technology

• Charge readout:

- Drift along vertical direction and cathode plane in the middle
- Readout on strips etched on PCBs
- Two induction and one collection readout
- Cathode at -300 kV, drift field of 450 V/cm
- Photon Detection System (PDS)
 - Based on X-ARAPUCA " 4π " reference design
 - SiPM and electronics partially on Cathode: @ 300 kV
 - PoF & SoF demonstrated in ProtoDUNE
- FD#3: more enhanced concepts Optimized VD
 - X-ARAPUCA bars can be installed inside Field Cage walls
 - PDS full FC optical coverage -> potentially no need for cathode PDS
 - Dual calorimetry (charge \oplus light): improve energy resolution
 - Extend sensitivity for low-energy physics: SNB, solar, BSM

Mattia Fanì | The Deep Underground Neutrino Experiment

30 May 2023

FD#4 Module of Opportunity

- Detector concepts
 - **Optimized VD** for FD#3,4: optimized r/o CE (digital) & SoF (large bandwidth) for higher ch count
 - **SLoMo** concept: A <u>SURF</u> <u>Low</u> Background <u>Mo</u>dule
 - **SoLAr** concept: novel pixelated charge readout
 - **Xe-doped** LArTPC neutrinoless double beta decay concept
 - **Theia** concept: A hybrid Cherenkov/scintillation detector module for DUNE
 - LiquidO concept: Opaque Liquid Scintillator for **Neutrino Detection**
- Several R&D presented
 - Q-Pix, LArPix, and many more

Mattia Fanì | The Deep Underground Neutrino Experiment

- The Deep Underground Neutrino **Experiment (DUNE)**
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN

The DUNE physics and performances Low-energy events in DUNE

> The ProtoDUNE cryostat Photo credit: CERN

ProtoDUNE at CERN

• Two 750 t prototypes 7.2 x 6.1 x 7.0 m

 Design validation of all components, at full scale

• Single-phase Horizontal Drift (HD)

- Charged particle beam + cosmic rays
- Event reconstruction, full analysis
- Calibration systems, Xe doping, HV tests
- Single-phase Vertical Drift (VD)
 - Different approach to LArTPC principle
 - Significantly simplified implementation

Each DUNE-FD module will be 20 times larger than one ProtoDUNE detector

the largest LAr-TPC detectors ever built

A drift volume of ProtoDUNE-HD

A drift volume of ProtoDUNE-VD (under construction)

ProtoDUNE-SP Performance

• Detector performance validation

with cosmic rays, beam charged particles; photon detector demonstration

Stable operation

- > 99.5% of HV uptime for cosmic rays and beam data taking
- High purity, well above requirements (> 30 ms e-lifetime most runs, > 20 ms all runs)
- >99% of TPC channels (wires) active

• Low noise in all readout channels

- S/N > 10 induction wires
- S/N > 40 collection wires

• Test of full analysis chain

- Hit clustering, track reconstruction, particle ID
- Simulation tuning detailed paper

[Phys. Rev. D 102, 092003 (2020)]

- The Deep Underground Neutrino **Experiment (DUNE)**
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

A reconstructed test beam π^+ interacting in ProtoDUNE-SP recorded with a number of cosmic rays

DUNE Neutrino Oscillations

- Projected results for $\nu_e/\bar{\nu}_e$ appearance, $\nu_u/\bar{\nu}_u$
 - disappearance, assuming Normal ordering
- Reconstructed spectra of selected
 Charged Current events
- Sensitivity assessment includes full FD systematics treatment (flux, crosssection, and detector) and ND constraints
- ~1000 ν_e appearance events • ~10,000 ν_{μ} disappearance events nage credit: SURF

30 May 2023

DUNE CP violation and mass ordering

 $=\sqrt{\Delta\chi^2}$

Assumed staged running

- ν -beam / $\overline{\nu}$ -beam mode
- Full PIP-2, Full ND-GAr, FD#3,4 in 4-6 yrs
- Mass ordering (Phase-1):
- 1 year if $\delta_{CP} = -\frac{1}{2}$,
- 4 years for all δ_{CP} values
- Output: Potential of CP violation discovery:
- Requires Phase-1 + Phase-2

[https://arxiv.org/pdf/2203.06100.pdf

DUNE physics Beyond the Standard Model

- Non-standard short-baseline and long-baseline oscillation phenomena:
 - Sterile neutrino mixing,
 - Non-standard neutrino interactions,
 - Non-unitarity
 - **CPT** violation
- Searches at the FD:
 - Baryon number violation
 - Inelastic boosted dark matter
- Searches at the ND:
 - **Trident interactions**
 - Heavy neutral leptons
 - ow-mass dark matter

[EPJC (2021) 81, 322]

Mattia Fanì | The Deep Underground Neutrino Experiment

Atmospheric ν interaction $\nu_{\mu} + n \rightarrow \mu + p$ selected in the $p \rightarrow K^+ + \bar{\nu}$ sample if p misidentified as a K

- The Deep Underground Neutrino Experiment (DUNE)
- Main detection technique
- DUNE Beam and Detectors
- ProtoDUNE at CERN
- The DUNE physics and performances Low-energy events in DUNE

X-ray image of M82 galaxy's SN 2014J as recorded by Chandra on Jan 21, 2014 Photo credit: NASA

Supernova neutrino signal in LAr

Interaction channels in argon

- Output Charged-current (CC) interaction on Ar $\nu_e + {}^{40} Ar \rightarrow {}^{40} K^* + e^-$ **Dominant interaction** due to LAr sensitivity to ν_{ρ} $\bar{\nu}_e + {}^{40}Ar \rightarrow {}^{40}Cl^* + e^+$
- Elastic scattering on electrons (ES)

 $v_x + e^- \rightarrow v_x + e^-$

Neutral current (NC) interactions on Ar

$$v_x + {}^{40}Ar \rightarrow v_x + {}^{40}Ar^*$$

- Further separation possible by K*, CI*, Ar* de-excitation, ejected nucleons
- Event-by-event categorization by interaction type is also possible for DUNE's sub-cm spatial resolution

arXiv:2008.06647

SN Event simulation and reconstruction in DUNE

$SN\nu$ events:

- Low deposited energy
- Small $e^{-/+}$ stub-like tracks

Reconstructed tracks:

• $\nu_{\rho}CC$: cloud of de-excitation γ blips

- γ (Compton, bremsstrahlung)
- Nucleons (missing reco KE)
 - Inelastic scattering on Ar
- ES: lone e^- pointing away from SN
 - Single scattered e^- tracks
- $NC: e^-$ in de-excitation clouds
 - γ rays (single or cascade)

[DUNE TDR, B. Abi *et al* 2020 *JINST* **15** T08010]

30 May 2023

Distributions of expected observed events

40 kton argon, 10 kpc Infall Neutronization Accretion No oscillations Normal ordering Inverted ordering 0.05 0.15 0.2 0.1 Time (seconds)

• DUNE is most sensitive to $\nu_e CC$ events but will also observe others

• Unique to DUNE - other detectors largely sensitive to $\bar{\nu}_{\rho}$

SN direction can be determined exploiting directionality and Bragg peak at the stopping end of $\nu - e$ ES events (See K. Scholberg's talk)

Number of expected observed events

DUNE has unique sensitivity to low-energy ν_{ρ} from a galactic supernova burst

- 100s to 1000s from galactic SNB
- 10s from LMC, O(1) from Andromeda
- Large uncertainty due to SN model •
- 5° resolution on the SN direction

Several unknown:

➡Neutrino mass ordering

- \rightarrow Collective oscillations from ν - ν scattering
- ➡Underlying model
- Physics uncertainties in core collapse

30 May 2023

Conclusions

- DUNE will measure neutrino oscillations providing insights on matter/antimatter imbalance in the Universe and other open questions in physics
- Unique sensitivity to low-energy ν_{ρ} from a galactic supernova burst
- Prototyping efforts underway at CERN with test beam runs planned in 2024
- Excellent performance in ProtoDUNE-SP-I with many exciting physics results coming out
- First DUNE far detector installation in mid-2020s with beginning of science program in late 2020s

Thank you for your attention