SN@JUNO

Achim Stahl, SNvD2023, L'Aquila on behalf of the JUNO collaboration

SN @ JUNO

Jiangmen Underground Neutrino Observatory

medium baseline reactor neutrino experiment

Kaiping

Macao

total reactor power 26.6 GWh

53km

台山

Taishan

Yangjiang 💰

Achim Stahl

Jiangmen Underground Neutrino Observatory a versatile neutrino project

solar

~ 60 / day

+-

reactor

several / day

atmospheric

⁸B: 50 / day CNO: 1000/day ⁷Be: 10000 / day

~5000 @ 10 kpc diffuse: few/year

supernova

~ 400 / year

geo

NEW PHYSICS

proton decay sterile neutrinos dark matter annihilation neutrino magnetic moment

PPNP 123 (2022) 103927 J. Phys. G 43 (2016) 030401

Achim Stahl

2

trinos as

probes

JUNO Detector

20 kt liquid scintillator in acrylic sphere Veto: water-Čerenkov Top-Tracker

17600 20" PMTs

25600 3" PMTs total coverage: 78%

Detector comparison

	Daya Bay	KamLand	JUNO	SuperK	DUNE
target mass	20 t	1 kt	20 kt	25 30 kt	40 kt
energy resolution	7.5 %/ \sqrt{E}	$6 \% / \sqrt{E}$	3.0 %/ \sqrt{E}	14.2 % @ 10 MeV	~10 % @ 10 MeV
energy calibration	~ 1.5 %	2 %	< 1%	~1%	?
optical coverage	12 %	34 %	78 %	40 %	-
light yield	160 p.e./MeV	500 p.e./MeV	1345 p.e./MeV	-	-

Detector comparison

	Daya Bay	KamLand	JUNO	SuperK	DUNE			
target mass	20 t	1 kt	20 kt	25 30 kt	40 kt			
energy resolution	7.5 %/ \sqrt{E}	$6 \% / \sqrt{E}$	3.0 %/ \sqrt{E}	14.2 % @ 10 MeV	~10 % @ 10 MeV			
energy calibration	~ 1.5 %	2 %	< 1%	~1%	?			
optical coverage	12 %	34 %	large targe	large target mass				
light yield	160 p.e./MeV	500 p.e./MeV	very low o	excellent energy resolution very low detection threshold				
			tr					

The Observatory

Detector progress

Photo Multipliere Tubes

20" tubes: 17612 (CD) + 2400 (Veto)

3" tubes: 25600

all PMTs tested

Dark Count Rate

Status of the Detector

Stainless steel structure

- 30 longitudinal & 23 latitudinal layers
- 590 connecting rods
- 6000 m² HDPE covering the WP surface

Acrylic sphere

- Inner radius: (35.40 ± 0.04) m
- Thickness: (12.4 ± 0.4) cm
- Radiopurity: U/Th/K < 1 ppt

completed

assembly started in June '2 (8 out of 23 rings installed)

PMTs

- Large PMTs 3300 / 17600
- Small PMTs 2200 / 25600
- A few modules operational

stallation started

Direct CCSN Observation @ JUNO

Direct CCSN Observation @ JUNO

Detection Channels

CCSN @ 10 kpc

Event Rates

galactic center: $\sim 10^4$ events in 10 s \rightarrow okay

close CCSN
rates up to MHz!
issue with transmission rate
temp. storage near the PMTs
send only charge/time of pulses

SN Alert System

monitor trigger/event rates
 scan for sudden increases
 of rates

Prompt (trigger) monitor

- global trigger
- multimessenger trigger

Online (DAQ) monitor

fast reconstruction of events

global trigger:

low threshold (200 keV), low background, full readout of waveforms

multimessenger trigger: even lower threshold (20 keV), more background, limited readout (charge & time of pulses)

CCSN Alerts: Prompt Monitor

Online monitor from global trigger Select events 8 ... 40 MeV (based on # fired PMTs) Muon-Veto Monitor the rate

Alert time: 10 ... 30 ms @ 10 kpc

CCSN Pointing

IBD events $(\overline{
u}_e + p \rightarrow e^+ + n)$ displacement of prompt – delayed events

$$\vec{d}_{\nu} = \frac{1}{N} \sum_{i} \vec{X}_{i}$$

Monte Carlos Simulation

Generator

neutrino flux (theory)

visible energies

Unfolding: energy & flavour

Phys. Rev. D 99, 123009 (2019)

Unfolding: energy & flavour

Phys. Rev. D 99, 123009 (2019)

Achim Stahl

21

Diffuse SN Neutrino Background

Diffuse SN Neutrino Background

The Challenge

main background

• NC-atmospheric i.e. $v_x + {}^{12}C \rightarrow v_x + n + {}^{11}C$ pulse shape discrimination triple coincidence

IBD events: $\overline{ u}_e + p ightarrow e^+ + n$

The Challenge

main background

- NC-atmospheric i.e. $v_x + {}^{12}C \rightarrow v_x + n + {}^{11}C$ pulse shape discrimination triple coincidence
- fast neutrons fiducial volume cut

The Challenge

main background

- NC-atmospheric i.e. $v_x + {}^{12}C \rightarrow v_x + n + {}^{11}C$ pulse shape discrimination triple coincidence
- fast neutrons fiducial volume cut energy cut ($E_{\nu} < 35$ MeV)

other background

- reactor neutrinos
- cosmogenic isotopes (⁷Li) muon veto & energy cut $(E_{\nu} > 12 \text{ MeV})$

IBD events: $\overline{ u}_e + p ightarrow e^+ + n$

The Challenge

main background

- NC-atmospheric i.e. $v_x + {}^{12}C \rightarrow v_x + n + {}^{11}C$ pulse shape discrimination triple coincidence
- fast neutrons fiducial volume cut energy cut ($E_{\nu} < 35$ MeV)

other background

- reactor neutrinos
- cosmogenic isotopes (⁹Li) muon veto & energy cut $(E_{\nu} > 12 \text{ MeV})$

IBD events: $\overline{ u}_e + p ightarrow e^+ + n$

The Expectation

signal: 4 ... 7 evts/year efficiency ~ 75% background ~ 5 evts/year

JUNO Detector & Status

 \bigcirc

- Direct Observation of CCSN
- Diffuse Supernova Neutrino Background

Thanks