SNEWS2.0: A SuperNova Early Warning System for the Multi-Messenger Era

Marta Colomer Molla On behalf of the SNEWS Collaboration

Core-Collapse Supernova Multi-Messenger signal

- Next nearby CCSN will produce neutrinos, GWs and EM radiation
- Neutrinos will act as an early alert for the multi-messenger follow-up

Why/what SNEWS?

Unique insights into astro-, particle and nuclear physics under extreme conditions \rightarrow Extract as much multi-messenger information as possible!

But... the expected rate of CCSN in the Milky Way is ~1.5 per century \rightarrow We need to be prepared!

- Bring all neutrino detectors together \rightarrow search coincident signal
- Coordination with the different EM telescope networks, GW detectors and amateur astronomers
- → Early and continuous monitoring is crucial

The goals of SNEWS

SNEWS1.0 has been guided by "the three P's":

- **Prompt:** provide an alert within < 1 h timescale
- **Positive**: false alert rate < 1 per century
- **Pointing**: provide supernova localisation (pointing not included in SNEWS1.0 alerts)

The goals of SNEWS

Combining different detector triggers in real time allows for a positive and prompt alert + measuring the different flavor neutrino emission

Marta Colomer Molla –

SNEWS1.0

Operating in automated mode for almost 20 years
Currently: 7 detectors send alerts to the network

Marta Colomer Molla -

SNEWS1.0 → SNEWS2.0

 \rightarrow Since 2019: Re-imagine SNEWS for today's new age of multi-messenger astronomy: No more need to avoid false positives at all costs, we want to extract as much information as possible!

- Basic implementation almost complete
- Negotiating MoUs with experiments
- Regular "fire drills" (test alerts) already taking place
- \rightarrow Move from "3P's" to "3F's" of a good alert:

Why "Fast"?

- Neutrinos are emitted few-minutes to few-days before EM signal
 - \rightarrow Telescopes might miss the EM signal otherwise
 - (bad conditions, not observing at the right moment, etc)
- Neutrinos are emitted together with gravitational waves
 - \rightarrow Detection of GW counterpart difficult without neutrino alert
- Successful follow-up = rich physics outcome
 - Recording of the shock breakout (SBO): progenitor nature
 - Identification of GW signal: additional physics

"Fast" alerts in SNEWS2.0

Lower latency:

→ More flexible SNEWS policy

DAQ design of individual experiments is important

- Most current SNEWS experiments latency O(minutes)
- → Expected server latency O(seconds)
- Improvement possible for various detectors in SNEWS2.0

"Fast": Pre-supernova

- Neutrino emission previous to the explosion (during Si burning phase) detectable hours to days before the stellar collapse
- Advance notice for neutrino and GW detectors \rightarrow Fast response!
- Difficult detection due to low-luminosity, low mean neutrino energy and longer time window of pre-supernova emission
- Low-background detectors can detect such signal for close by CCSN events ($\leq 1 \text{ kpc}$) \rightarrow KamLAND already shares significance alerts

Shell Si burning, 1.72 hours B.C.

Marta Colomer Molla –

When SNEWS started... only positive alerts (FAR < 1 in 100 years)

Now... it is fine to send out uncertain alerts if false alarm rate is included \rightarrow GW alerts have been the best example of it

 \rightarrow Allowing higher FAR enables to increase the distance horizon and the sensitivity to exotic transients

 \rightarrow Astronomers can set their own FAR threshold

"Full featured"?

 \rightarrow Provide as much additional information as possible for best follow-up strategy and physics outcome:

- Timing of neutrino signal
- Pointing (from the "3P's") \rightarrow See talks by Kate and Jeff!
- Distance
- Type of event:
 - Sudden cut-off in v signal can indicate black hole formation
 - Identify non-core-collapse events? (SN Ia, PISN, binary merger...)
 - Secondary bursts?
 - •

which others?

"Full featured": Timing

 Neutrino time profile brings information on the CCSN physics (and about the models)

(Example using *snewpy*: https://github.com/SNEWS2/snewpy and *snowglobes https://github.com/SNOwGLoBES/snowglobes software*)

Marta Colomer Molla –

"Full featured": Timing

Allows to define the time window for the GW signal search

Pagliaroli+, PRL (2009), Halzen+ PRD (2009), Nakamura+, MNRAS (2016)

"Full featured": Distance

- The source luminosity at different wavelengths depends on the distance \rightarrow may affect the optimal observation strategy
- A lot of background light for Galactic source and dust obscuration near Galactic Center complicates the EM detection
- If close-by event, direction may let us create "shortlist" of candidate stars
- \rightarrow Distance can be inferred using the detected neutrino event rate

Marta Colomer Molla -

"Full featured": Pointing

- Fast + Pointing = triangulation method (covered by Jeff later)
- First basic triangulation algorithm implemented in SNEWS
- Calculation and connection with the coincidence server has been tested in a distributed mock data challenge (fire drill):

SNEWS2.0: processing data

- Continuous data stream from detectors to SNEWS server \rightarrow alert decision
- Infrastructure for message coordination and interfacing with clients
- Data exchange system relies on HOPSKOTCH (developed within SciMMA)
- Experiments can choose which degree of data they want to share and when

Marta Colomer Molla –

- SNvD conference @LNGS - SNEWS overview

The SNEWS2.0 software

"Follow-up" in the multi-messenger era

- In 2000: ATel & GCN started distributing alerts
 - Human-readable, unstructured, via mailing list
 - Good strategy for SNEWS 1.0
- Today: ~107 alerts per day
 - Specialized brokers distribute & filter alerts
 - Large degree of automation
 - Many robotic & fully automated telescopes
- SNEWS can bring neutrino & astronomy communities together to prepare follow-up strategy
- \rightarrow Ensure maximal science output

Who "Follows-up" SNEWS?

SNEWS meets the Astronomy Community

- GRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts, arXiv:2008.03962) → See talk by A. Coleiro
 - Coordinates telescope observations of transient sources with large localization uncertainties
- AAVSO (American Association of Variable Star Observers, aavso.org)
 - Network of amateur astronomers: often more flexible, large database, can send out alerts with observation requests to member
- REFITT (Recommender Engine for Intelligent Transient Tracking, arXiv:2003.08943)
 - AI-based engine to plan & coordinate follow-up taking into account available facilities (wavelengths, sensitivity, current weather, ...)

... and more!

First "Follow-up" campaign

AAVSO started campaign to regularly observe SN candidate list

Marta Colomer Molla –

Summary

- A core-collapse will produce neutrinos with GWs, and before EM radiation
 - \rightarrow Early warning to identify the multi-messenger signals
- SNEWS2.0 will have a larger network of neutrino detectors, with more than 15 experiments simultaneously taking data
- With SNEWS2.0, the scientific reach of the observations will be maximized
- SNEWS2.0 will help coordinating the efforts for a global multi-messenger follow-up of the next CCSN explosion
- First fire drills have taken place and we learned a lot from them