SNvD 2023@LNGS

International conference on Supernova Neutrino Detection May 29th to June 1st, 2023 Gran Sasso National Laboratory Assergi, L'Aquila [Italy]

International conference on Supernova Neutrino Detection

New physics and supernova neutrinos

Manibrata Sen Max-Planck Institut für Kernphysik, Heidelberg 29/05/23

FORBES > INNOVATION > SCIENCE

A Very Bright Supernova Just Appeared Near The Big Dipper

Jamie Carter Senior Contributor ^① I inspire people to go stargazing, watch the Moon, enjoy the night sky

Images by Gianluca Masi, Manciano (GR), Italy - MPC code: M50 - The Virtual Telescope Project - www.virtualtelescope.eu

What is "beyond" the SM (in this talk)?

Artwork courtesy of Sandbox Studio, Chicago for Symmetry

The Standard Model

What is "beyond" the SM (in this talk)?

Beyond

The Standard Model

SN1987A: the marvel of the last century

Feb 23, 1987

- Took place 168,000 years ago
- In the Large Magellanic Cloud, 50 kpc away. $18M_{\odot}$ star.

"Many" neutrinos were observed

- O(30) events in total.
- One of the first examples of multimessenger astronomy.
- Neutrinos before photons.
- Not enough statistics, still a coherent picture can be formed!

A supernova engine

Talk by Burrows, Janka for further details

Supernova neutrino luminosity

Neutrino propagation inside a SN

The governing Hamiltonian

• Easier to study the behaviour of the flavour ensemble, through

 $\varrho = \begin{bmatrix} \langle \nu_e | \nu_e \rangle & \langle \nu_e | \nu_x \rangle \\ \langle \nu_x | \nu_e \rangle & \langle \nu_x | \nu_x \rangle \end{bmatrix}$

• The Eq. of motion $d_t \varrho_p(r, p, t) = -i[H_p, \varrho_p] + C[\varrho_p]$

Collective neutrino oscillations

Talk by Kneller for further details

What sort of a laboratory is the SN?

Advent of multi-messenger astronomy

- ν s probe stellar interiors.
- Relevant information about supernova dynamics, shockwave propagation, turbulence.
- Physics of dense neutrino streams. Can lead to "collective oscillations"!

- Non-standard (self)interactions, decay, magnetic moment, millicharge, etc.
- New particles: sterile neutrinos, axions, majorons, etc.
- Any crazy stuff that theorists can think about.

Category of bounds from SN neutrinos

New Physics can

1. Impact on the neutrino luminosity, and average energy, and duration of neutrino burst

2. Impact on the neutrino spectra/ flux

Impact on the neutrino luminosity, and average energy

SN cooling bound

- New modes of energy loss due to weakly coupled particles.
- If $\mathscr{L}_x > \mathscr{L}_\nu \sim 10^{52} \, \mathrm{erg/s}$, then duration of neutrino burst is reduced.
- $g < g_{\min}$: not efficiently produced. $g > g_{\max}$: efficiently trapped and reabsorbed (trapping mechanism needs to be well understood)

 $L_x \propto g_x^2$,

Volume

Blackbody

FIG. 1. Schematic dependence of L_x on the coupling strength g_x . The horizontal line denotes the neutrino luminosity L_v . In the range $g_{\min} < g < g_{\max}$ the LEP emission L_x would exceed L_v .

Raffelt and Seckel, (PRL 1998) Raffelt, Stars as laboratories for fundamental physics, UCP (1996)

• Further improvements in treatment recently.

Caputo, Raffelt, Vitagliano (JCAP 2022)

1. The dark photon, and other light friends in SN

Different dark photon models

- 1. Vanilla Dark photon ~ $\mathscr{L} \supset \frac{1}{4}F'F' + \frac{\epsilon}{2}FF'$
- Consider free-streaming and trapping limit. Main production from $pp \rightarrow ppA'$, $np \rightarrow npA'$.

Dent, Ferrer, Krauss, arXiv 1201.2683

- Include finite temperature and density effects in A' production.
 Chang, Essig, McDermott, (JHEP 2017)
- Bounds can be further strengthened by considering decay to e⁺e⁻, γ,
 both in the mantle, and near the progenitor surface.

Kazanas, Mohapatra, Nussinov, et al., (NPB 2015) DeRocco, Graham, Kasen, et al., (JHEP 2019)

Inclusion of muons from simulations

- For lower Z' masses, semi-Compton process relevant.
- Upper bound fixed by trapping arguments.
- 3. Axion-muon coupling gauge boson.
- Probe of axion physics

 $\mu\gamma \rightarrow \mu a$

 $\mu p \rightarrow \mu p a$

Croon, Ellor, Leane, McDermott, (JHEP 2021)

2. Sterile neutrinos in SN

Sterile neutrinos in supernova

- Sterile neutrino production in SN, through
 (i) adiabatic MSW conversion at radii
 - 10-15 km inside neutrinosphere.

(ii) collisional production due to $\nu_{\mu,\tau} - n$ scattering.

 Interplay of two main parameters: width of the resonance region and the oscillation length, and m.f.p.

Arguelles, Brdar, Kopp, (PRD 2019)

But..feedback is important

- ν_s is produced from ν_a . This affects the $V_{\rm eff}$, which again affects flavor conversions: feedback.
- Neglecting feedback drastically over-estimates the ν_a lepton number.
- Including feedback in multi-zone models relaxes SN bounds.

Tamborra, Wu, Suliga, (JCAP 2019)

See also Raffelt and Zhou (PRD 2011), for an earlier discussion of feedback in one-zone models.

ν_{s} DM from neutrino self-interactions

• ν_s can also be produced inside the SN core due to new interactions $\mathscr{L} \supset \lambda_{aa} \nu_a \nu_a \phi$ Lead to additional cooling channels. Strong bounds!

• Bound : $L \leq 3 \times 10^{52} \, \text{erg/s.}$

Chen, **MS**, Tuckler, et al. (JCAP 2022)

Impact on the neutrino spectra/flux

The neutronization burst: a foreward

- Large burst of ν_e in the first ~30 ms post bounce.
- Robust feature of all simulations.
- Large ν_e excess, hence no collective oscillations within the SM. (Remember $\nu_e \overline{\nu}_e \leftrightarrow \nu_\mu \overline{\nu}_\mu$!)

Sensitivity to neutrino mass ordering

 ν_e is produced as ν_3 (ν_2) in NH (IH).

$$\begin{split} L_{\nu_e}(R_E) &\simeq |U_{e2}|^2 L_{\nu_e}^0 = 0.2 L_{\nu_e}^0 & \text{IH} \\ L_{\nu_e}(R_E) &\simeq |U_{e3}|^2 L_{\nu_e}^0 = 0.03 L_{\nu_e}^0 & \text{NH} \end{split}$$

Independent probe of mass ordering!

Dighe, Smirnov (PRD 2000)

Sensitivity to neutrino mass ordering

3. Non-standard (self)interactions

Non-standard interactions

• Presence of NSI can lead to important consequences in dense core $\mathscr{L} \supset \varepsilon_{\alpha\beta}^{fP} 2\sqrt{2}G_F (\bar{\nu}^{\alpha} \gamma^{\mu}L \nu^{\beta}) (\bar{f}\gamma_{\mu}Pf)$

• Extra potential
$$V = \sqrt{2}G_F N_f \varepsilon_{\alpha\beta}^{fP}$$

- Leads to an extra resonance ('I' resonance) if $H_{ee} = H_{\mu\mu}, H_{\tau\tau}$. Changes flavor content deep inside the SN.
- Can reduce Y_e during collapse, leading to lower shock energy.

Amanik, Fuller, (PRD 2007) See also Amanik, Fuller, Grinstein, Astropart. Phys (2005)

Esteban-Pretel, Tomas, Valle, (PRD 2007)

A neutrinophilic ϕ

- Consider a neutrinophilic scalar $\mathscr{L} \supset g \nu \nu \phi$
- Leads to vv → 2v2v. Doubles v
 number density, but energy is halved.
 Cannot transfer enough energy
 to stalled shock (red region).
- Additional bounds from scattering with $C\nu B$, and losing energy (blue region).
- Additional bounds due to modification of stellar physics.

Fuller, Mayle, Wilson, Astrophys. J. (1988) Kachelreiss, Tomas, Valle, (PRD 2000) Farzan (PRD 2000)

Shalgar, Tamborra, Bustamante, (PRD 2020)

Non-standard self-interactions

• Consider $\mathscr{L} \supset G_F (G_{\alpha\beta} \bar{\nu}^{\alpha} \gamma^{\mu} L \nu^{\beta}) (G_{\eta\delta} \bar{\nu}^{\eta} \gamma^{\mu} L \nu^{\delta}),$

$$x = \mu, \tau$$

where most generally,
$$G = \begin{pmatrix} 1 + g_{ee} & g_{ex} \\ g_{ex} & 1 + g_{xx} \end{pmatrix}$$

• Non-linear EoMs, extremely sensitive to
$$\nu$$
SI.
 $i d_t \varrho_p = \left[H_{\text{vac}} + H_{\text{mat}} + \sqrt{2}G_F \int d\mathbf{q} \, \boldsymbol{G} \, \varrho_q \, \boldsymbol{G} \,, \varrho_p \right],$
Raffelt, Sigl (Non-linear EoMs, extremely sensitive to ν SI.

Raffelt, Sigl (NPB 1993) Blennow, Mirizzi, Serpico (PRD 2008)

 g_{ex} ≠ 0 can populate ν_x from ν_e during neutronization. Cause collective oscillations now, giving distinct spectral splits in neutronization spectra.

Das, Dighe, MS (JCAP 2017)

4. Neutrino decay & properties

Non-standard neutrino decay

- Massive neutrinos can decay to lighter ones even within the SM. Age longer than universe.
- New physics can mediate faster decay.

 $\mathcal{L} \supset \nu_h \nu_l \phi + \mathrm{H.c.}$

$$u_{hL} \rightarrow \nu_{lL} + \phi \quad \dots$$
 Helicity cons. (h.c.)
 $u_{hL} \rightarrow \nu_{lR} + \phi \quad \dots$ Helicity flip. (h.f.)

Use the neutronization flux to (i) Put some of the tightest bound on this decay. (ii) Distinguish between Dirac and Majorana nature.

The game plan

Normal Ordering

Ando PRD (2004) de Gouvea, Martinez-Soler, **MS** (PRD 2019)

For a detailed theoretical framework of neutrino decay, see Lindner, Ohlsson, Winter, (NPB 2002)

Enhancement in spectra

Simulated data in DUNE

de Gouvea, Martinez-Soler, MS (PRD 2019)

Simulated data in DUNE

Dirac vs Majorana

acts as an "inert" neutrino and cannot be observed.

$$\mathcal{L}_{\mathrm{Maj}} \supset \nu_h \nu_l \phi + \mathrm{H.c.}$$

$$\nu_{hL} \rightarrow \nu_{lL} + \phi$$

$$\nu_{hL} \rightarrow \nu_{lR} + \phi$$
if

acts as the "antineutrino" - produces an e^+ on interaction—observable

Different signatures in detectors sensitive to ν_e and $\overline{\nu}_e$.

Look at DUNE and HK

Distinguishing capacity: Dirac(D) vs Majorana (M)

- Simulate data consistent with Dirac neutrinos and $\tau/m = 10^5$ s/eV.
- A combination of DUNE+ HK can distinguish between Dirac and Majorana neutrinos at 5σ .

de Gouvea, Martinez-Soler, **MS** (PRD 2019)

Pseudo-Dirac neutrinos

Martinez-Soler, Perez-Gonzalez, MS (PRD 2022)

Esmaili, Farzan, (JCAP 2012)

Pseudo-Dirac neutrinos: SN1987A

Rules out $\delta m^2 \sim [2.5, 3.] \times 10^{-20} \text{eV}^2$ by more than 3σ .

Slight preference for $\delta m^2 = 6.31 \times 10^{-20} \text{eV}^2$ over the un-oscillated scenario by $\Delta \chi^2 \approx 3$.

Neutrinos from all supernovae

John Beacom, TAUP2011

DSNB=Diffuse Supernova Neutrino Background

Talk by Horiuchi for further details

Finally, the DSNB: an omnipresent laboratory

 δm_{f}^{2} [eV²]

de Gouvea, Martinez-Soler, Perez-Gonzalez , MS (PRD 2020)

Exotica 1: The Hubble Parameter

DSNB High-z photons base-ACDM Planck 15 Planck'18 Riess et al DES+BAO+BBN Low-*z* photons SHOES CCHP 10 MIRAS $\Delta\chi^2$ HOLICOW MCP 5 SBF Low-z neutrinos HK with Gd DSNB(HK) Theia DSNB (Theia) 0 180 30 40 50 60 80 90 100 70 80 60 100 20 40 120 140 160 0 $H_0 [km s^{-1} Mpc^{-1}]$ $H_0 [km s^{-1} Mpc^{-1}]$

de Gouvea, Martinez-Soler, Perez-Gonzalez, MS (PRD 2020)

Exotica 2: Redshift dependent neutrino mass

Z

de Gouvea, Martinez-Soler, Perez-Gonzalez , MS (PRD 2022)

Exotica 2: Redshift dependent neutrino mass

de Gouvea, Martinez-Soler, Perez-Gonzalez , MS (PRD 2022)

Other new physics-an incomplete list

• Axions, and axion-like particles.

Raffelt, Stars as laboratories for fundamental physics, UCP (1996) Jaeckel, Spannowsky, (PLB 2016) Lucente, Carenza, Fischer, et al. (JCAP 2020)

Majorons and other feebly interacting scalars.

Kachelreiss, Tomas, Valle, (PRD 2000) Farzan (PRD 2000) Fiorillo, Raffelt, Vitagliano, 2209.11773

• Neutrino magnetic moment: bounds $\mu_D < 10^{-12} \mu_B$.

Barbieri, Mohapata, (PRL 1988) Jana, **MS**, Silva (JCAP 2022)

- Radiative decays: $\nu \rightarrow \nu' \gamma$, gives a coincident γ -ray flare. Bounds Raffelt, Stars as laboratories for fundamental physics, UCP (1996) $\tau/m > 10^{15}$ s/eV.
- Time of flight delay due to neutrinos: $m_{\nu} < 20 \,\mathrm{eV}$. Zatsepin, JETP Lett (1968) More precise time measurements narrow it to O(1)eV.

Talk by Pompa for further details

Hansen, Lindner, Scholer, (PRD 2020) Pompa, Capozzi, et al (PRL 2022)

• If ν have millicharge, their path can be bent by galactic B field, causing a time delay, $e_{\nu} < 10^{-17} e (1 \mu G/B)$ Barbiellini, Cocconi, Nature (1987)

Conclusion

- A core-collapse SN is one of the best astrophysical laboratories for fundamental neutrino physics.
- Can use neutrino luminosity constraints to put bounds on exotic new particles.
- Better understanding of the underlying neutrino physics can be leveraged to use the signal to put some of the best bounds on nonstandard neutrino properties, as well as the nature of neutrinos.
- Till a galactic SN takes place, one can utilize the constant availability of the DSNB to already probe some of these physics.

Backup

Estimating the DSNB

Cosmology
$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda (1+z)^{3(1+w)} + (1-\Omega_m - \Omega_\Lambda)(1+z)^2}$$

Manibrata Sen

Signature of spectral splits

SASI effects

Neutrinos and gravitational waves

 $17 M_{\odot}$ progenitor at d=10 kpc

Future event rates in detectors

d=10 kpc

Future event rates in detectors

Detector	Type	Mass (kt)	Location	Events	Flavors	Status
Super-Kamiokande	H_2O	32	Japan	7,000	$\bar{ u}_e$	Running
LVD	C_nH_{2n}	1	Italy	300	$\bar{ u}_e$	Running
KamLAND	C_nH_{2n}	1	Japan	300	$\bar{ u}_e$	Running
Borexino	C_nH_{2n}	0.3	Italy	100	$\bar{ u}_e$	Running
IceCube	Long string	(600)	South Pole	(10^6)	$\bar{ u}_e$	Running
Baksan	C_nH_{2n}	0.33	Russia	$\overline{50}$	$\bar{\nu}_e$	Running
MiniBooNE*	C_nH_{2n}	0.7	USA	200	$\bar{ u}_e$	(Running)
HALO	\mathbf{Pb}	0.08	Canada	30	$ u_e, u_x$	Running
Daya Bay	C_nH_{2n}	0.33	China	100	$\bar{ u}_e$	Running
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	$\bar{ u}_e$	Turning on
SNO+	$C_n H_{2n}$	0.8	Canada	300	$\bar{ u}_e$	Near future
MicroBooNE*	Ar	0.17	USA	17	$ u_e$	Near future
DUNE	Ar	34	USA	3,000	$ u_e$	Proposed
Hyper-Kamiokande	H_2O	560	Japan	110,000	$\bar{ u}_e$	Proposed
JUNO	$C_n H_{2n}$	20	China	6000	$\bar{ u}_e$	Proposed
RENO-50	C_nH_{2n}	18	Korea	5400	$\bar{ u}_e$	Proposed
LENA	$C_n H_{2n}$	50	Europe	15,000	$\bar{ u}_e$	Proposed
PINGU	Long string	(600)	South Pole	(10^6)	$\bar{ u}_e$	Proposed

Neutrino parameters

NuFIT 5.2 (2022)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.3)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
-	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	
date	$\theta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	
neric	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$	
ithout SK atmosp	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$	
	$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00059}$	$0.02029 \to 0.02391$	$0.02219^{+0.00060}_{-0.00057}$	$0.02047 \to 0.02396$	
	$\theta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.12}_{-0.11}$	$8.23 \rightarrow 8.90$	
	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$	
W	$\frac{\Delta m^2_{21}}{10^{-5} \ {\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21\\-0.20}$	$6.82 \rightarrow 8.03$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.025}$	$-2.581 \rightarrow -2.408$	
					24	
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.4)$	
		Normal Ord bfp $\pm 1\sigma$	lering (best fit) 3σ range	Inverted Orde bfp $\pm 1\sigma$	ering $(\Delta \chi^2 = 6.4)$ 3σ range	
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$	dering (best fit) 3σ range $0.270 \rightarrow 0.341$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$	
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$	
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$	
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{array}{r} \text{Normal Ord} \\ \text{bfp } \pm 1\sigma \\ 0.303^{+0.012}_{-0.012} \\ 33.41^{+0.75}_{-0.72} \\ 0.451^{+0.019}_{-0.016} \\ 42.2^{+1.1}_{-0.9} \end{array}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ 0.270 \rightarrow 0.341 \\ 31.31 \rightarrow 35.74 \\ \\ 0.408 \rightarrow 0.603 \\ \\ & 39.7 \rightarrow 51.0 \end{array}$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$	
atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{array}{r} \mbox{Normal Ord} \\ \mbox{bfp } \pm 1 \sigma \\ 0.303^{+0.012}_{-0.012} \\ 33.41^{+0.75}_{-0.72} \\ 0.451^{+0.019}_{-0.016} \\ 42.2^{+1.1}_{-0.9} \\ 0.02225^{+0.00056}_{-0.00059} \end{array}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ & 0.270 \rightarrow 0.341 \\ & 31.31 \rightarrow 35.74 \\ \\ & 0.408 \rightarrow 0.603 \\ & 39.7 \rightarrow 51.0 \\ \\ & 0.02052 \rightarrow 0.02398 \end{array}$	Inverted Order bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$ $0.02223^{+0.00058}_{-0.00058}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$	
SK atmospheric data	$ \sin^2 \theta_{12} \\ \theta_{12}/^{\circ} \\ \sin^2 \theta_{23} \\ \theta_{23}/^{\circ} \\ \sin^2 \theta_{13} \\ \theta_{13}/^{\circ} $	$\begin{array}{r} \mbox{Normal Ord} \\ \mbox{bfp } \pm 1 \sigma \\ 0.303^{+0.012}_{-0.012} \\ 33.41^{+0.75}_{-0.72} \\ 0.451^{+0.019}_{-0.016} \\ 42.2^{+1.1}_{-0.9} \\ 0.02225^{+0.00056}_{-0.00059} \\ 8.58^{+0.11}_{-0.11} \end{array}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ 0.270 \rightarrow 0.341 \\ 31.31 \rightarrow 35.74 \\ \\ 0.408 \rightarrow 0.603 \\ & 39.7 \rightarrow 51.0 \\ \\ 0.02052 \rightarrow 0.02398 \\ & 8.23 \rightarrow 8.91 \end{array}$	$ \begin{array}{c} \mbox{Inverted Orde} \\ \mbox{bfp} \pm 1 \sigma \\ 0.303^{+0.012}_{-0.011} \\ 33.41^{+0.75}_{-0.72} \\ 0.569^{+0.016}_{-0.021} \\ 49.0^{+1.0}_{-1.2} \\ 0.02223^{+0.00058}_{-0.00058} \\ 8.57^{+0.11}_{-0.11} \end{array} $	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$	
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$	$\begin{array}{r} \mbox{Normal Ord} \\ \mbox{bfp} \pm 1 \sigma \\ 0.303^{+0.012}_{-0.012} \\ 33.41^{+0.75}_{-0.72} \\ 0.451^{+0.019}_{-0.016} \\ 42.2^{+1.1}_{-0.9} \\ 0.02225^{+0.00056}_{-0.00059} \\ 8.58^{+0.11}_{-0.11} \\ 232^{+36}_{-26} \end{array}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ & 0.270 \rightarrow 0.341 \\ & 31.31 \rightarrow 35.74 \\ & 0.408 \rightarrow 0.603 \\ & 39.7 \rightarrow 51.0 \\ & 0.02052 \rightarrow 0.02398 \\ & 8.23 \rightarrow 8.91 \\ & 144 \rightarrow 350 \end{array}$	$ \begin{array}{c} \mbox{Inverted Orde} \\ \mbox{bfp} \pm 1 \sigma \\ 0.303^{+0.012}_{-0.011} \\ 33.41^{+0.75}_{-0.72} \\ 0.569^{+0.016}_{-0.021} \\ 49.0^{+1.0}_{-1.2} \\ 0.02223^{+0.00058}_{-0.00058} \\ 8.57^{+0.11}_{-0.11} \\ 276^{+22}_{-29} \end{array} $	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$	
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\delta_{\rm CP}/^{\circ}}{10^{-5} \ {\rm eV}^2}$	$\begin{array}{r} \mbox{Normal Ord} \\ \mbox{bfp} \pm 1 \sigma \\ 0.303^{+0.012}_{-0.012} \\ 33.41^{+0.75}_{-0.72} \\ 0.451^{+0.019}_{-0.016} \\ 42.2^{+1.1}_{-0.9} \\ 0.02225^{+0.00056}_{-0.00059} \\ 8.58^{+0.11}_{-0.11} \\ 232^{+36}_{-26} \\ 7.41^{+0.21}_{-0.20} \end{array}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ 0.270 \rightarrow 0.341 \\ 31.31 \rightarrow 35.74 \\ 0.408 \rightarrow 0.603 \\ 39.7 \rightarrow 51.0 \\ \\ 0.02052 \rightarrow 0.02398 \\ 8.23 \rightarrow 8.91 \\ \\ 144 \rightarrow 350 \\ 6.82 \rightarrow 8.03 \end{array}$	$ \begin{array}{r} \mbox{Inverted Order} \\ \mbox{bfp} \pm 1 \sigma \\ 0.303^{+0.012}_{-0.011} \\ 33.41^{+0.75}_{-0.72} \\ 0.569^{+0.016}_{-0.021} \\ 49.0^{+1.0}_{-1.2} \\ 0.02223^{+0.00058}_{-0.00058} \\ 8.57^{+0.11}_{-0.11} \\ 276^{+22}_{-29} \\ 7.41^{+0.21}_{-0.20} \end{array} $	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$ $6.82 \rightarrow 8.03$	

Earth-matter effects

Fig. 39. – Observable signal $E^2 F_{\bar{\nu}_e}$ with (continuous curve) and without (dotted curve) Earth crossing.

SN density profile

Axion bounds

Too many events due to absorption on O, and subsequent γ emission.