

Detecting SN neutrino bursts via CEvNS with DarkSide-20k

Davide Franco - APC

on behalf of the DarkSide-20k Collaboration

SNvD 2023@LNGS - 29/05/2023

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering

measured for the first time with the COHERENT CsI[Na] detector in 2017 (Science 357, 1123, 2017)

$$Q_W^2 = (N - (1 - 4\sin^2 \theta_W)Z)^2 \approx N^2$$

Supernova neutrino detection via CEvNS

Advantages

- highest cross section in the SN-v energy range
 - "small" detectors become sensitive to SNs
- Insensitive to neutrino flavours
 - Measurement of the entire SN-v flux
 - Sensitivity to the neutronization burst
 - Complementary to CC and ES from giant detectors

Disadvantages

- **keV / sub-keV** recoils due to:
 - Kinematics
 - Nuclear recoil quenching
 - Electric-field induced quenching

LAr lower cross section wrt LXe but higher recoil energies: rate depends on threshold and quenching

Davide Franco - APC

CEvNS Kinematics in Noble Liquids

Detector	Type	Mass (kt)	Location	Events	Stat
Super-Kamiokande	H_2O	32	Japan	7,000	Runn
LVD	$C_n H_{2n}$	1	Italy	300	Runn
KamLAND	$C_n H_{2n}$	1	Japan	300	Runn
Borexino	$C_n H_{2n}$	0.3	Italy 100		Runn
IceCube	Long string	(600)	South Pole (10^6)		Runn
Baksan	$C_n H_{2n}$	0.33	Russia 50		Runn
HALO	\mathbf{Pb}	0.08	Canada	30	Runn
Daya Bay	$C_n H_{2n}$	0.33	China	100	Runn
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	Runn
$MicroBooNE^*$	Ar	0.17	USA	17	Runn
SNO+	$C_n H_{2n}$	0.8	Canada	300	Near fu
DUNE	Ar	40	USA	3,000	Futu
Hyper-Kamiokande	H_2O	374	Japan	$75,\!000$	Futu
JUNO	$C_n H_{2n}$	20	China	6000	Futu
RENO-50	$C_n H_{2n}$	18	Korea	5400	Futu
PINGU	Long string	(600)	South Pole	(10^{6})	Futu

CC, ES, IBD, NC, ...

From K. Scholberg, J.Phys. G45 (2018) no.1, 014002

Davide Franco - APC

SN Neutrino Rate

27 M_{sun} at 10 kpc

CEvNS

Dual-Phase Noble Liquid TPCs for Dark Matter Search

Dual-Phase Liquid Argon TPCs for Dark Matter Search

- Low energy threshold (a few tens of eV)
- Loss of scintillation pulse shape discrimination
- Loss of position reconstruction along the electric field

Davide Franco - APC

- Efficient particle discrimination
- High accuracy position reconstruction
- High energy threshold (a few keV)

LAr Ionization Response to Electronic Recoils

$$Q_y^{ER} = \left(\frac{1}{\gamma} + p_0 \left(E_{er}\right)\right)$$

Davide Franco - APC

Thomas-Imel + extended custom model

LAr Ionization Response to Nuclear Recoils

Global fit to DS-50 calibration data with neutrons sources + external datasets (ARIS and SCENE)

Davide Franco - APC

From SNEWPY (and many thanks to S. El Hedri and I. Goos, APC)

The SN-v CEvNS Signal in LAr

Bollig 2016 / s27.0c model at 10 kpc

Background rate per unit of target mass scales with surface / volume ratio

The DS-50 TPC

- 50 kg active mass of UAr • 19 top + 19 bottom R11065 HQE 3'' PMTs
- 36 cm height, 36 cm diameter
- Low field of 0.2 kV/cm drift

The DarkSide-50 Background

DS-50 event rate in [4, 140] Ne and $d_{xy} > 6$ cm from the lateral walls: 2.7 / ton / 10 s

The Global Dark Matter Argon Collaboration

> 500 Collaborators, > 100 institutes distributed across 14 countries

DarkSide-20k

TPC

- 50 ton of underground LAr (dual-phase)
- Gd-loaded acrylic (PMMA) walls
- Walls coated with TPB as WL shifter
- 2112 channels*

Inner Veto

- 480 channels*

Davide Franco - APC

DarkSide-20k @ LNGS

• 35 ton of underground LAr (single-phase)

Outer Veto

- 700 ton of atmospheric LAr (single-phase)
- 128 channels*

(*) each channel = 96 SiPMs

Davide Franco - APC

DarkSide-20k Light Readout

Performances

parameter	spec required	spec achieve
PDE @ 420 nm	> 40%	~ 50%
DCR (87 K)	250 Hz / tile	~20 Hz / t
correlated noise probabilities (afterpulses, cross talk)	< 50% + 50%	<10% + 3
SiPM gain	> 1E6	> 1E6
SNR after ARMA filter	> 8	> 8
time resolution	~ 10 ns	~15 ns

Davide Franco - APC

DarkSide-20k Neutron Veto

- Neutron thermalisation in acrylic
- Thermal neutron capture on Gd
- TPC and IV detection of gamma ray cascade
- Radioactivity assay satisfactory
- ~90% tagging efficiency from simulation

Gd(MAA)₃ doped acrylic sheet (5 cm thick)

Spurious Electrons and Analysis Threshold

Spurious Electrons

- Excess of events observed in DS-50 with E < 4 e- mostly correlated in time with preceding events
- Likely due to ionization electrons captured by impurities and re-emitted with a certain delay
- A cut at 3 e- is applied for the results shown in these slides. Increasing the cut at 4 e- does not significantly impact the results

Davide Franco - APC

Radioactive Backgrounds

Internal background

- ³⁹Ar at 0.7 mBq / kg (as in DS-50)
- 35 Bq in the active mass / 0.5 Bq in [3, 100] e-

External backgrounds

- ²³⁸U, ²³⁵U, ²³²Th, ¹³⁷Cs, ⁵³Mn, ⁴⁰K, ⁶⁰Co from early
 (<2020) material screening measurements
- 75 Bq in the active mass / 0.3 Bq in [3, 100] e-

Almost a factor 2 less external background from recent

measurements, material selection, and detector optimization

From 2.7 / ton / 10 s in DS50 to 0.16 / ton / 10 s in DS20k (without fiducialization)

SN luminosity

Davide Franco - APC

SN-v Time Evolution

Expected Event Rate Time Evolution in DS20k

(maximum drift time ~ 3.5 ms)

Davide Franco - APC

Signal and Background Rates

Spatial and time distributions of energy deposits from radioactive background and SN neutrinos

Davide Franco - APC

Trigger-less DAQ

Hits

- Full radioactive background simulation from most recent screening material campaign
- Waveform simulation with realistic electronic noise
- Simulation of SiPM dark counts, afterpulses, and cross-talks
- Full DAQ emulation
- S1/S2 pulse finder / reconstruction (98% identification efficiency at 1 ionization electron)

Reconstructed Pulses

Reconstructed pulses

- Significant increase in the number of S2 pulses with a low number of hits
- Potential signature for the SNEWS alarm

Impact on the DAQ

Expected data transfer rate

from WF digitizer board (64 channels) to front-end CPUs

- Non-significant increase in data flow
- DAQ not impacted

ARGO

The GADMC is considering a future single-phase or dual-phase multi-hundred tonne detector after DS-20k likely at SNOLAB

For this work we assume that Argo is a dual-phase TPC with a target mass of 370 t.

	$11-M_{\odot}$ SN			$27-M_{\odot}$ SN		
	SN - ν	S/B		$SN-\nu$	$\mathrm{S/B}$	
SN phase	[1/t]	DS20k	ARGO	[1/t]	DS20k	ARGO
Burst	0.08	212	231	0.09	243	264
Accretion	1.83	105	114	3.30	190	207
Cooling	1.96	16	17	3.76	30	33

DS-20k & ARGO

Fitted Toy MC Samples

Davide Franco - APC

Reconstructed Mean and Total Energies

$$f(E_{\nu}) = \frac{\xi}{4\pi D^2} \frac{(\alpha_T + 1)^{\alpha_T + 1} E_{\nu}^{\alpha_T} e^{-\frac{E_{\nu}(\alpha_T + 1)}{\langle E_{\nu} \rangle}}}{\langle E_{\nu} \rangle^{\alpha_T + 1} \Gamma(\alpha_T + 1)}$$

D = SN distance ξ = total neutrino energy $\langle E_v \rangle$ = mean neutrino energy α_T = pinching parameter

M. T. Keil, G. G. Raffelt and H.-T. Janka, Astrophys. J. 590 (2003) 971

Discovery Sensitivity

SN neutronization burst discovery potential

DarkSide-20k and SN neutrino physics

- **Discovery** potential up to the Small Magellanic Cloud
- Sensitivity to neutronization burst up to the Milky Way edge
- DAQ system without special data processing.
- ongoing)
- Ongoing exploration on low-energy pulse number-based warning system for SNEWS

• Preliminary studies confirm that signals from a 27 M_{sun} SN at 10 kpc can be handled by the foreseen trigger-less DarkSide-20k

• Expected ~50 CC v_e events in the outer veto from 27 M_{sun} SN data at 10 kpc in the veto (evaluation of the trigger threshold

