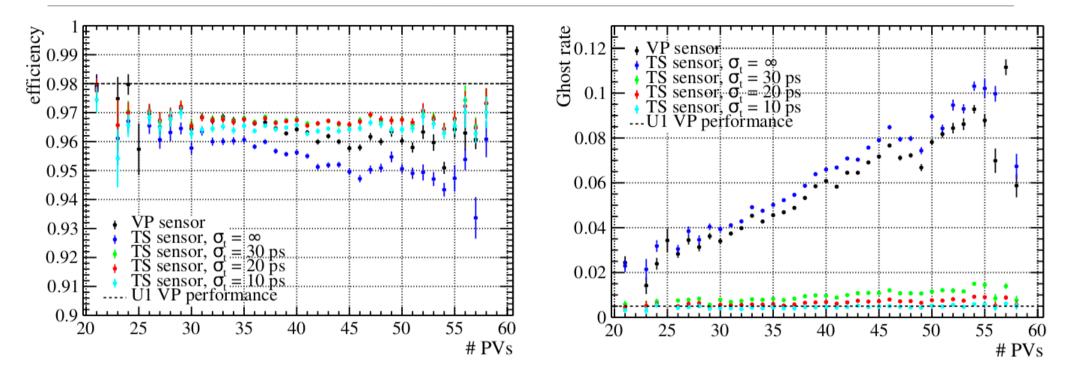


LHCb VeloPixel fast simulation

Serena Maccolini, Angelo Carbone, Tommaso Fulghesu TIMESPOT meeting - WP4

27 May 2021

serena.maccolini@cern.ch

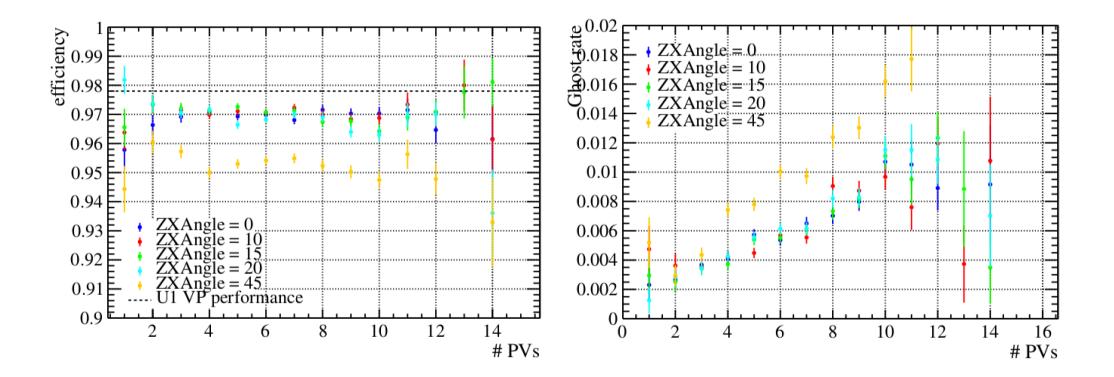

University of Bologna and INFN Bologna

TIMESPOT sensor - simulation

- Input: MChits from full simulation with VeloPixel (VP) where the Multiple Scattering is embedded
- Deposited charge taken from MCHit. Rescaled and distributed on the sensor pixels, and digitized considering the TIMESPOT (TS) sensor:
 - trench = 5x40 mum2 in XY (vs none in VP)
 - depth = 150 mum (vs 200 mum in VP)
 - noise = 300 e- (vs 130e- in VP)
 - threshold = 1500 e- (vs 1000 e- in VP)
 - No diffusion in XY
 - Alignment of the thrench with the pixel position
 - time resolution = 10,20,30 ps

Upgrade I	εVELO(%)	PGHOST(%)
VP No timing	98.0	0.5

Performances



 Targeting Upgrade I VP performances Efficiency lower than U1 Ghostrate comparable with U1

Upgrade II	εVELO(%)	PGHOST(%)
$\begin{array}{l} \textbf{TIMESPOT} \\ \sigma_t = 10 \text{ ps} \end{array}$	96.5	0.45
$\frac{\text{TIMESPOT}}{\sigma_t = 20 \text{ ps}}$	96.7	0.6
TIMESPOT σt = 30 ps	96.7	0.9
VP No Timing	96.4	5.6

Exploring different tilting angles to increase efficiency

Considering the TS sensor with no timing

