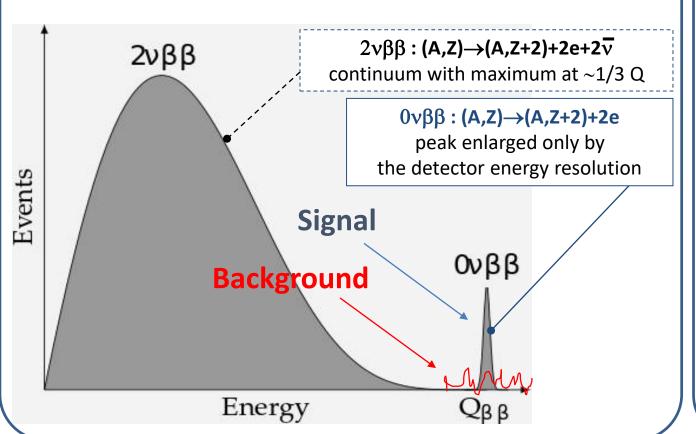
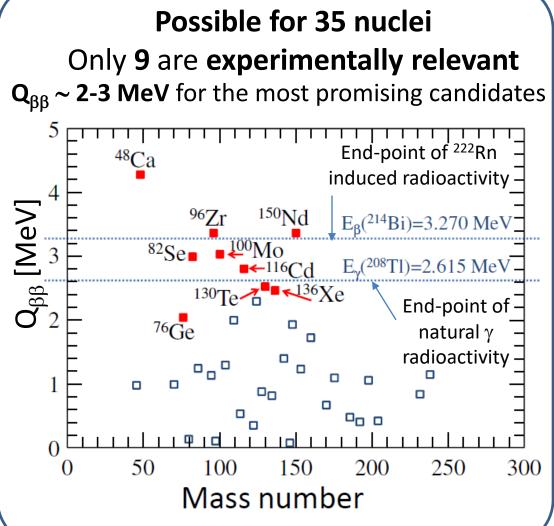
29 September 2021 to 1 October 2021 Gran Sasso National Laboratory (LNGS)

Survey on other next generation Double Beta experiments

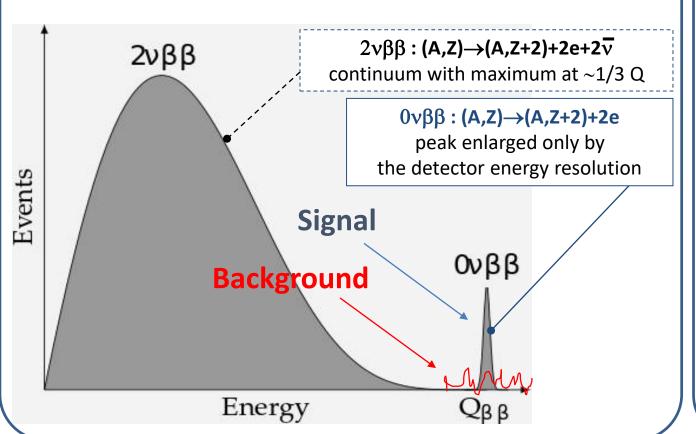

Andrea Giuliani
IJCLab, Orsay, France

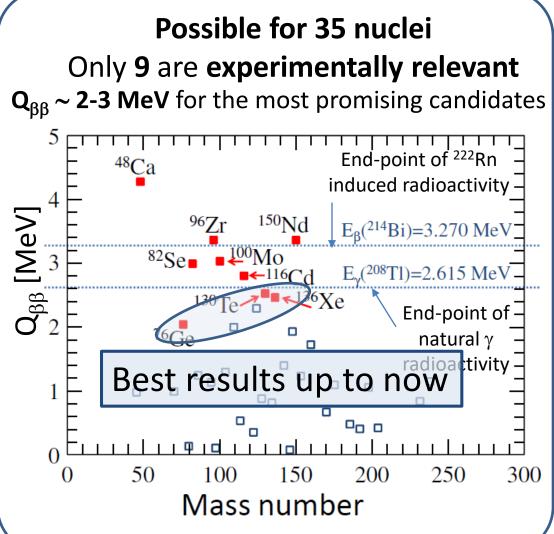


Which signature and which nuclei?

Sum energy spectrum of the two electrons

 $\mathbf{Q}_{\beta\beta}$: energy available for the products

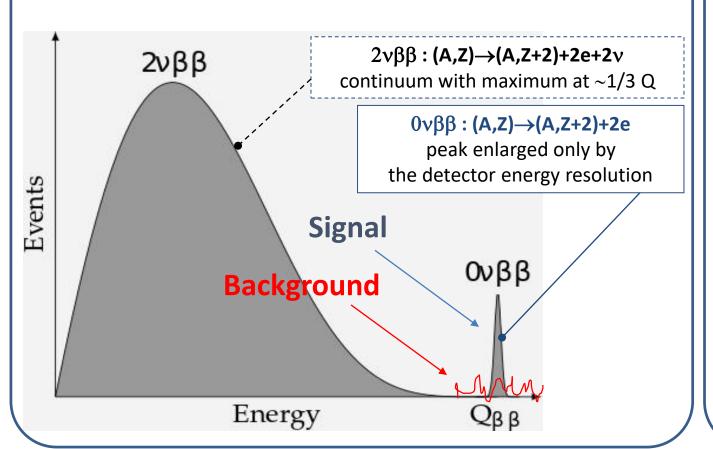


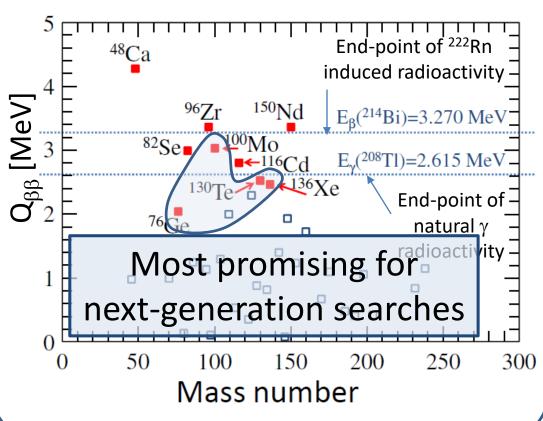


Which signature and which nuclei?

Sum energy spectrum of the two electrons

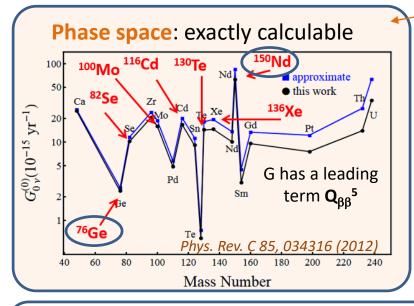
 $\mathbf{Q}_{\beta\beta}$: energy available for the products




Which signature and which nuclei?

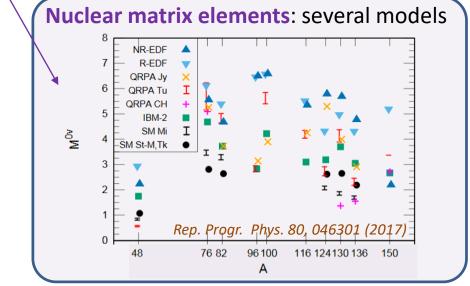
Sum energy spectrum of the two electrons

 $\mathbf{Q}_{\mathbf{B}\mathbf{B}}$: energy available for the products



Possible for 35 nuclei Only 9 are experimentally relevant

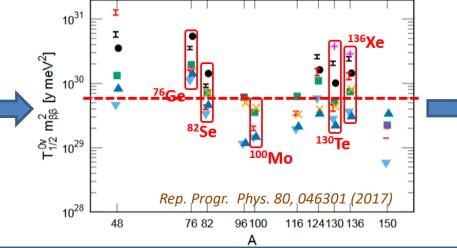
Which half-lives?


Mass mechanism $1/\tau = G(Q_{\beta\beta}, Z) g_A^4 |M_{nucl}|^2 m_{\beta\beta}^2$

 $g_A = \begin{bmatrix} 1.269 \text{ Free nucleon} \\ 1 & \text{Quark} \end{bmatrix}$

 $g_{A,eff} \sim 0.6 - 0.8$ to be taken (« quenching ») to describe β and $2\nu\beta\beta$ rates with current nuclear models

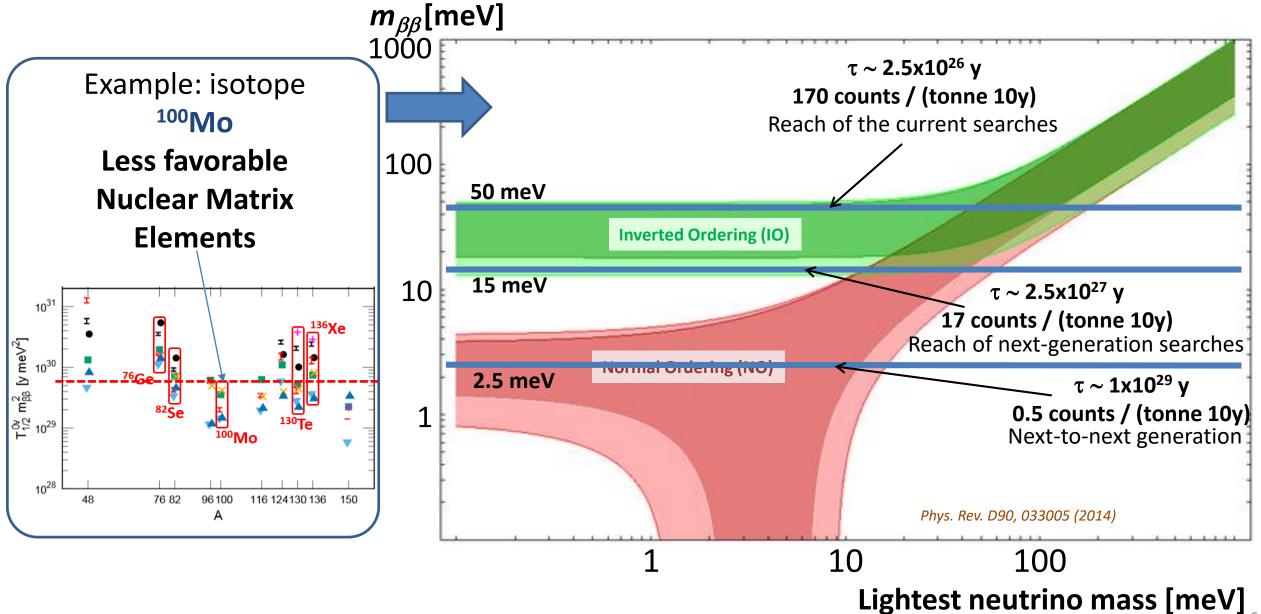
- Controversial
- Ab-initio calculation with unquenched g_A are required
- Progress ongoing

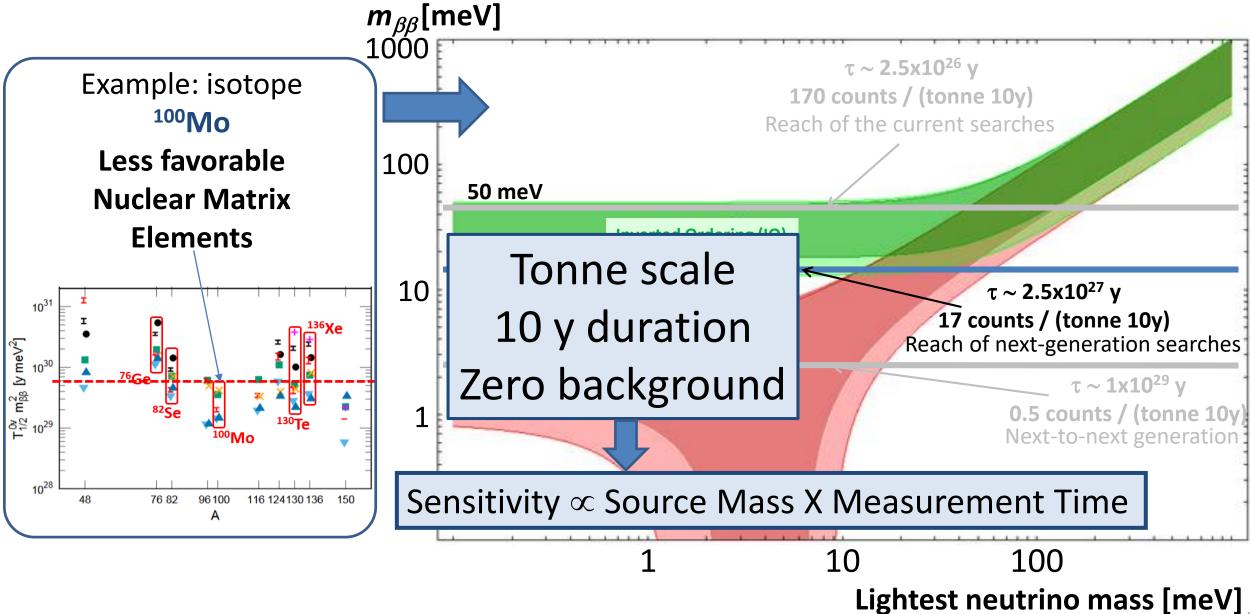


0νββ rate

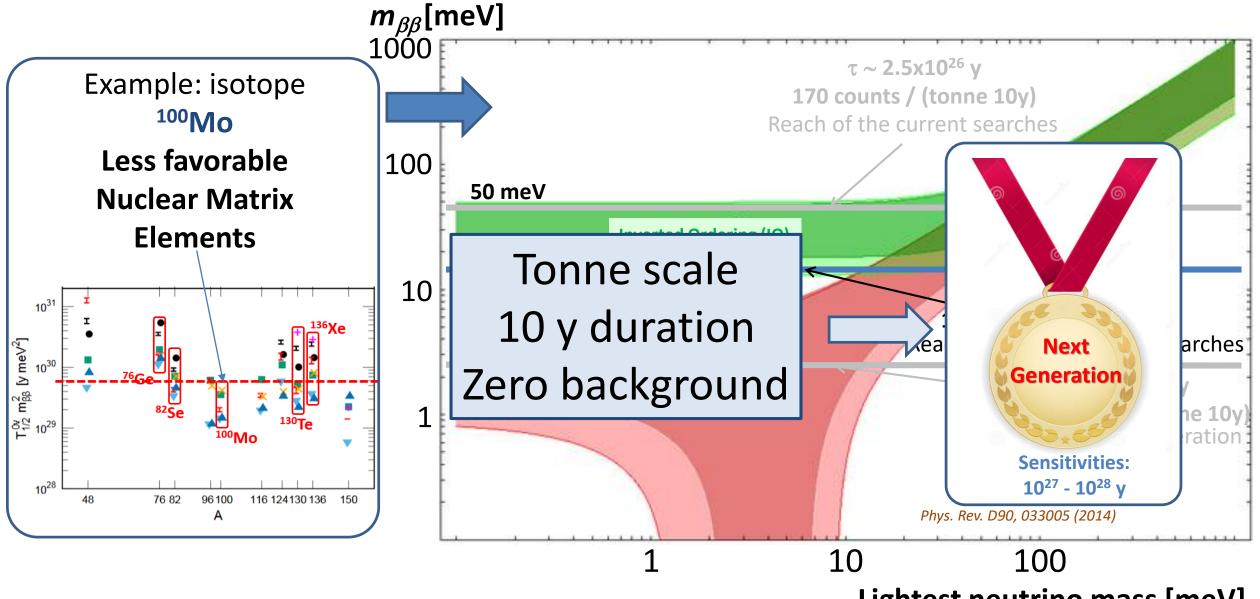
The $0\nu\beta\beta$ community still assumes $\mathbf{g}_{\mathbf{A}}\approx$ **1.27** (no quenching) with «traditional models» for \mathbf{M}_{nucl}

This point should be revised in the future, after an expected maturation of ab-initio calculations


arXiv:2108.11805

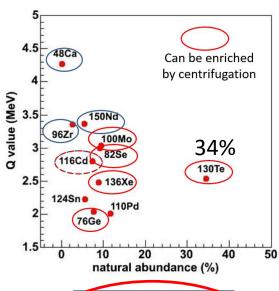

 $T_{1/2}^{0\nu} \simeq 10^{27-28} \left(\frac{0.01 \,\text{eV}}{\langle m_{\beta\beta} \rangle} \right)^2 \text{y}$

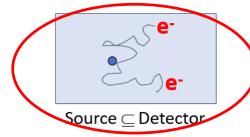
Working formula for general experiment design

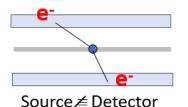

How many counts?

How many counts?

How many counts?


Expand the source, abate the background


Source


- 1 Large source \rightarrow tonne scale \rightarrow > 10²⁷ nuclei
- 2 Isotopic enrichment
- → the isotopic abundance is artificially increased to > 80%
 - \rightarrow Isotope selection

3 Maximize efficiency

→ The option in which the source is separated from the detector is abandoned for next-generation experiments

Background

- → Standard common actions
- **1** Natural radioactivity (α , β , γ radiation)

Levels $< 1 \mu Bq/kg$ are required \longleftrightarrow Ordinary material $\sim 1-100 Bq/kg$

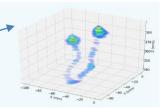
2 Cosmic muons

Underground laboratory \rightarrow Muon flux reduction by > 10⁶

3 Neutrons

Generated by rock radioactivity and muons

Quality and depth of the underground laboratory


Dedicated shieldings are often required

Dedicated shieldings are often required

4 Cosmogenic induced activity (long living)
Delayed effect of the cosmic radiation (activation)
Choice of detector materials – Storage of material underground

→ Specific actions depending on the technology

- High energy resolution
- Particle identification
- Tracking / Event topology
- Multi-site vs. single-site events
- Surface vs. bulk events
- Fiducial volume / Active shielding
- Final-state nucleus identification

background index b

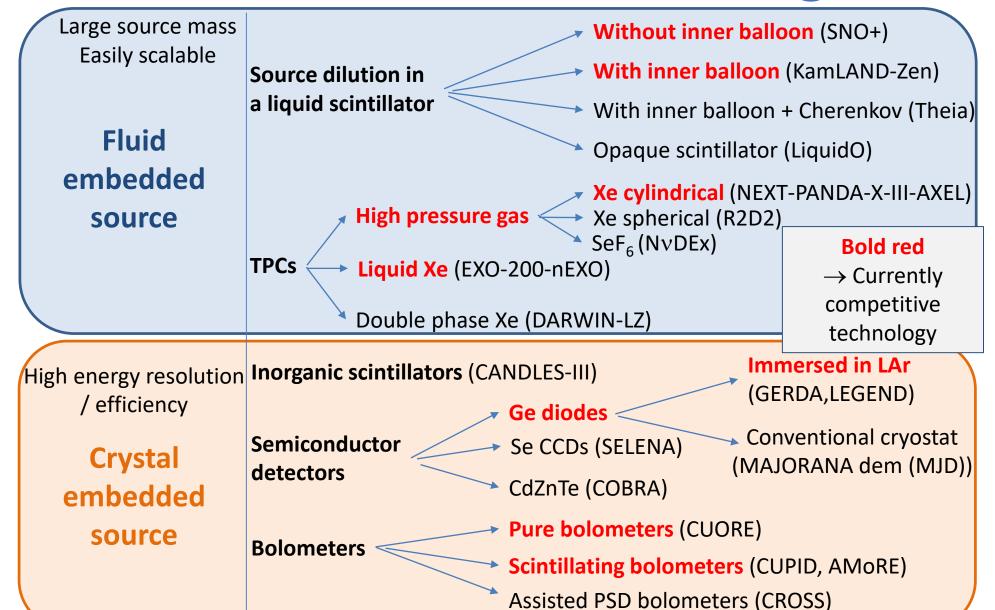
background counts @Q_{ββ}

 $M \times \Delta E \times T$

Deployment of an arsenal of technologies

Two main classes of experiment

The source is a fluid or is diluted in a fluid


Scalability – Increase:

- Vessel size
- Source concentration

The source is contained in a crystal

Scalability – Increase:

- Crystal size (marginal)
- Numbers of crystals

Implementation in tens of experiments

Legenda (color code)

Completed

Data taking

Construction / Commissioning

Advanced R&D sometimes at CDR/TDR level

R&D

TGV-2 EC/EC β +/EC 106 Cd

Large source mass Easily scalable

Fluid embedded source

NvDEx	High pressure TPC	⁸² Se
ZICOS	Dilution in liquid scintillator+Cherenkov	⁹⁶ Zr
SNO+	Dilution in liquid scintillator	¹³⁰ Te
SNO+-Phase II	Dilution in liquid scintillator	¹³⁰ Te
Theia	Dilution in liquid scintillator+Cherenkov	¹³⁰ Te- ¹³⁶ Xe
KamLAND-Zen 400	Dilution in liquid scintillator	¹³⁶ Xe
KamLAND-Zen 800	Dilution in liquid scintillator	¹³⁶ Xe
KamLAND2-Zen 800	Dilution in liquid scintillator	¹³⁶ Xe
EXO-200	Liquid TPC	¹³⁶ Xe
nEXO	Liquid TPC	¹³⁶ Xe
NEXT-White	High pressure TPC	¹³⁶ Xe
NEXT-100	High pressure TPC	¹³⁶ Xe
NEXT-HD / NEXT-BOLD	High pressure TPC	¹³⁶ Xe
PANDAX-III	High pressure TPC	¹³⁶ Xe
AXEL	High pressure TPC	¹³⁶ Xe
DARWIN	Double-phase TPC	¹³⁶ Xe
LZ	Double-phase TPC	¹³⁶ Xe
R2D2	High pressure TPC	¹³⁶ Xe

High energy resolution
/ efficiency

Crystal embedded source

CANDLES-III CANDLES-IV Scintillating bolometers MAJORANA DEM. Semiconductor detectors GERDA LEGEND-200 Semiconductor detectors LEGEND-1000 Semiconductor detectors CDEX-300 / CDEX-1000 Semiconductor detectors SELENA Semiconductor detectors SELENA Semiconductor detectors CUPID-0 Scintillating bolometers CUPID-MO Scintillating bolometers AMORE-I Scintillating bolometers CUPID CUPID Scintillating bolometers CUPID Scintillating bolometers CUPID CUPID Scintillating bolometers 100 Mo CUPID COBRA Semiconductor detectors TIN-TIN Bolometers CUORE Bolometers Scintillating bolometers 100 Mo-130Te CROSS Scintillating bolometers 100 Mo-130Te COBORO CIPID Scintillating bolometers CROSS Scintillating bolometers 100 Mo-130Te COBORO	LiquidO	Dilution in opaque liquid scintillator	multi
MAJORANA DEM. GERDA Semiconductor detectors LEGEND-200 Semiconductor detectors LEGEND-1000 Semiconductor detectors CDEX-300 / CDEX-1000 Semiconductor detectors SELENA SEMICONDO SCINTILLATIN SCINTILLATIN SCINTILLATIN SOLOMO CUPID COBRA SEMICONDOMO SEMICONDOM	CANDLES-III	Scintillators	⁴⁸ Ca
GERDASemiconductor detectors76GeLEGEND-200Semiconductor detectors76GeLEGEND-1000Semiconductor detectors76GeCDEX-300 / CDEX-1000Semiconductor detectors76GeSELENASemiconductor detectors82SeCUPID-0Scintillating bolometers82SeCUPID-MOScintillating bolometers100 MoAMORE-IScintillating bolometers100 MoCUPIDScintillating bolometers100 MoCUPID Reach / CUPID-1TScintillating bolometers100 MoCOBRASemiconductor detectors116 CdTIN-TINBolometers124 SnCUOREBolometers130 TeCROSSScintillating bolometers100 Mo-130 Te	CANDLES-IV	Scintillating bolometers	⁴⁸ Ca
LEGEND-200 LEGEND-1000 Semiconductor detectors CDEX-300 / CDEX-1000 Semiconductor detectors SELENA Semiconductor detectors SELENA Semiconductor detectors SELENA Scintillating bolometers CUPID-Mo Scintillating bolometers AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers CUPID Reach / Semiconductor detectors TIN-TIN Bolometers CUORE Bolometers CUORE CROSS Scintillating bolometers 100 Mo-130Te	MAJORANA DEM.	Semiconductor detectors	⁷⁶ Ge
LEGEND-1000 Semiconductor detectors CDEX-300 / CDEX-1000 Semiconductor detectors SELENA Semiconductor detectors CUPID-0 Scintillating bolometers CUPID-Mo Scintillating bolometers AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers CUPID Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers TIN-TIN Bolometers CUORE Bolometers CROSS Scintillating bolometers 100 Mo 124 Sn 130 Te 100 Mo-130 Te	GERDA	Semiconductor detectors	⁷⁶ Ge
CDEX-300 / CDEX-1000 Semiconductor detectors SELENA Semiconductor detectors SELENA Semiconductor detectors SELENA CUPID-0 Scintillating bolometers CUPID-Mo AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers 100 Mo CUPID CUPID Scintillating bolometers 100 Mo CUPID Reach / CUPID-1T Scintillating bolometers 100 Mo CUPID Reach / CUPID-1T Scintillating bolometers 110 Mo COBRA Semiconductor detectors TIN-TIN Bolometers CUORE Bolometers 124 Sn CUORE CROSS Scintillating bolometers	LEGEND-200	Semiconductor detectors	⁷⁶ Ge
SELENA Semiconductor detectors CUPID-0 Scintillating bolometers CUPID-Mo Scintillating bolometers AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers CUPID Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers COBRA Semiconductor detectors TIN-TIN Bolometers CUORE Bolometers CROSS Scintillating bolometers 100 Mo 116 Cd 117 Cd 110 Tinother 110	LEGEND-1000	Semiconductor detectors	⁷⁶ Ge
CUPID-0 CUPID-Mo Scintillating bolometers AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers CUPID Scintillating bolometers CUPID Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers COBRA TIN-TIN Bolometers CUORE CROSS Scintillating bolometers 100 Mo 116 Cd 116 Cd 117 CTIN-130 Te 130 Te 100 Mo-130 Te	CDEX-300 / CDEX-1000	Semiconductor detectors	⁷⁶ Ge
CUPID-Mo AMORE-I Scintillating bolometers AMORE-II Scintillating bolometers CUPID Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers COBRA TIN-TIN Bolometers CUORE CROSS Scintillating bolometers 100 Mo 110 Mo 1	SELENA	Semiconductor detectors	⁸² Se
AMORE-I AMORE-II Scintillating bolometers CUPID Scintillating bolometers CUPID Reach / CUPID-1T Scintillating bolometers COBRA TIN-TIN Bolometers CUORE CROSS Scintillating bolometers 100 Mo 100 Mo 100 Mo 100 Mo 100 Mo 110 Mo	CUPID-0	Scintillating bolometers	⁸² Se
AMORE-II Scintillating bolometers 100 Mo CUPID Scintillating bolometers 100 Mo CUPID Reach / CUPID-1T Scintillating bolometers 100 Mo COBRA Semiconductor detectors 116 Cd TIN-TIN Bolometers 124 Sn CUORE Bolometers 130 Te CROSS Scintillating bolometers 100 Mo-130 Te	CUPID-Mo	Scintillating bolometers	
CUPIDScintillating bolometers100 MoCUPID Reach / CUPID-1TScintillating bolometers100 MoCOBRASemiconductor detectors116 CdTIN-TINBolometers124 SnCUOREBolometers130 TeCROSSScintillating bolometers100 Mo-130 Te	AMORE-I	Scintillating bolometers	¹⁰⁰ Mo
CUPID Reach / CUPID-1T Scintillating bolometers 100 Mo COBRA Semiconductor detectors 116 Cd TIN-TIN Bolometers 124 Sn CUORE Bolometers 130 Te CROSS Scintillating bolometers 100 Mo-130 Te	AMORE-II	Scintillating bolometers	-
COBRA Semiconductor detectors TIN-TIN Bolometers 124Sn CUORE Bolometers 130Te CROSS Scintillating bolometers 100Mo-130Te	CUPID	Scintillating bolometers	¹⁰⁰ Mo
TIN-TIN Bolometers 124Sn CUORE Bolometers 130Te CROSS Scintillating bolometers 100Mo-130Te	CUPID Reach / CUPID-1T	Scintillating bolometers	¹⁰⁰ Mo
CUORE Bolometers 130Te CROSS Scintillating bolometers 100Mo-130Te	COBRA	Semiconductor detectors	¹¹⁶ Cd
CROSS Scintillating bolometers 100 Mo-130 Te	TIN-TIN	Bolometers	¹²⁴ Sn
	CUORE	Bolometers	¹³⁰ Te
DINCO Scintillating / Charankov balamatars 100Ma 130Ta	CROSS	Scintillating bolometers	¹⁰⁰ Mo- ¹³⁰ Te
BINGO SCITULIALING / CHERENKOV DOTOMETERS 100 MIO-100 TE	BINGO	Scintillating / Cherenkov bolometers	¹⁰⁰ Mo- ¹³⁰ Te

Current situation

$$T_{1/2} > 10^{24}$$
 y 90% C.I. restricted club

GERDA T_{1/2} > 1.8×10²⁶ y

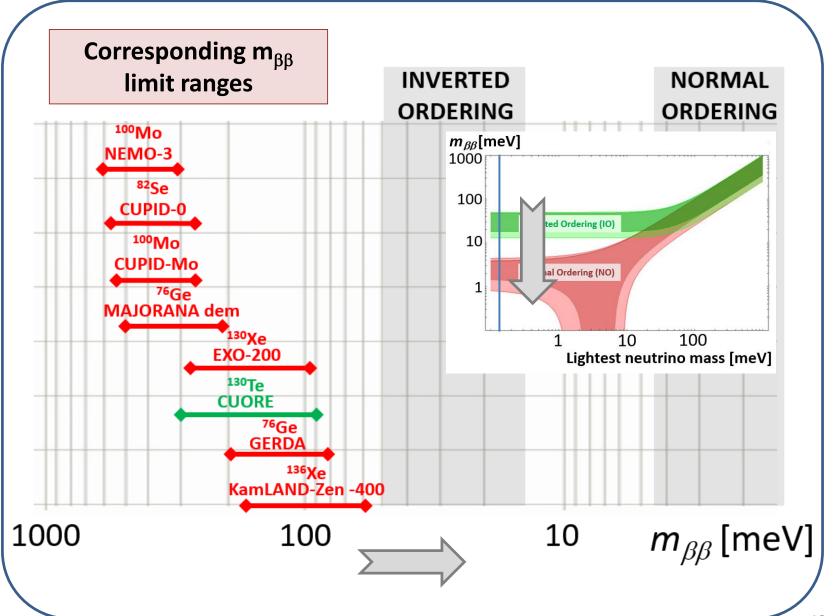
Phys. Rev. Lett. 125, 252502 (2020)

 $T_{1/2} > 1.07 \times 10^{26} \text{ y}$ KamLAND-Zen 400 Phys. Rev. Lett. 117, 082503 (2016)

EXO-200 $T_{1/2} > 3.5 \times 10^{25} \text{ y}$ Phys. Rev. Lett. 123, 161802 (2019)

 $T_{1/2} > 2.7 \times 10^{25} \text{ y}$ MAJORANA dem. Phys. Rev. C 100, 025501

 $T_{1/2} > 2.2 \times 10^{25} \text{ y}$ **CUORE** *arXiv:1907.09376*


 $T_{1/2} > 4.7 \times 10^{24} \text{ y}$ **CUPID-0**

L. Pagnanini, TAUP 2021

 $T_{1/2} > 1.8 \times 10^{24} \text{ y}$ **CUPID-Mo** B. Welliver, TAUP 2021

T_{1/2} > 1.1×10²⁴ y

Phys. Rev. D 92, 072011 (2015)

Most promising next-generation experiments

7 research lines / experiments are more mature:

- 4 fluid embedded
- 3 crystal embedded

In my view, these experiments are in the best position for actual construction and data taking on a-few-year time scale, for several reasons:

- Technology maturity
- Solid collaboration
- Funding prospects

Large source mass Easily scalable

Fluid embedded source

- \bigcirc **NEXT-White** \rightarrow **NEXT-100** \rightarrow NEXT-HD / NEXT-BOLD

Data taking
Construction /
Commissioning

Completed

Advanced R&D

High energy resolution
/ efficiency

Crystal embedded source

- GERDA MAJORANA dem. → LEGEND-200 → LEGEND-1000
- CUPID-Mo
 CUPID-O
 CUPID → CUPID Reach / CUPID 1t
 CUORE
- **7** AMORE-I → AMORE-II

Most promising next-generation experiments

7 research lines / experiments are more mature:

- 4 fluid embedded
- 3 crystal embedded

In my view, these experiments are in the best position for actual construction and data taking on a-few-year time scale, for several reasons:

- Technology maturity
- Solid collaboration
- Funding prospects

Large source mass Easily scalable

Fluid embedded

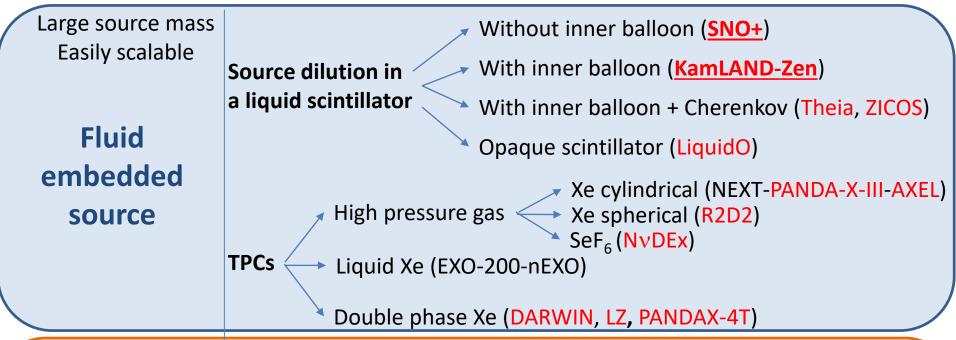
- KamLAND-Zen 400 → KamLAND-Zen 800 → KamLAND2-Zen
- $EXO-200 \rightarrow nEXO$
- NEXT-White ightarrow NEXT-HD / NEXT-BOLD

Completed

Data taking Construction / Commissioning

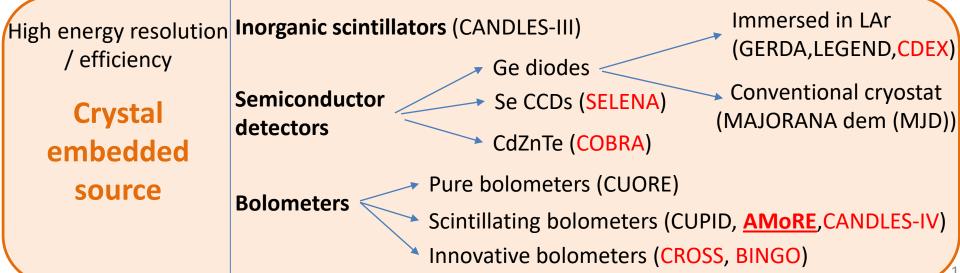
Advanced R&D

R&D


Crystal source

→ **CUPID** → CUPID Reach / CUPID 1t

AMORE-I → **AMORE-II**


Other promising developments

SuperNEMO (Tracking+Calorimetry) Source ≠ Detector

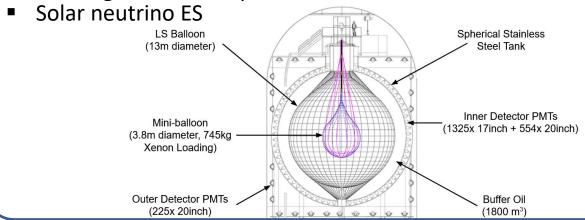
/ efficiency

Crystal embedded source

KamLAND-Zen (400 and 800)

KamLAND-Zen 400 → KamLAND-Zen 800 → KamLAND2-Zen

KamLAND-Zen 400 – Kamioka, Japan $T_{1/2} > 1.07 \times 10^{26}$ y 350 kg of ¹³⁶Xe – Leading experiment $m_{\beta\beta} < 60 - 160$ meV


Concept

Enriched Xenon diluted (3 wt%) in liquid scintillator exploiting the existing KamLAND detector with the addition of a nylon balloon

- Scalability increase diameter of nylon inner balloon (IB)
- ¹³⁶Xe On-off
- Energy resolution: $\Delta E(\sigma) \sim 7\%/VE(MeV) 4.5\%@Q_{BB}$
- Single event position Vertex resolution 15 cm/ vE(MeV)

Background:

- $2\nu\beta\beta$ decay of ¹³⁶Xe
- Xe-LS, IB and outer-LS radioactive impuritities
- Cosmogenic: muon-spallation

KamLAND-800 (started Jan 2019)

Major new points with respect to KamL-400

- More isotope 745 kg of ¹³⁶Xe
- New balloon (2X larger, more radiopure)
- Reduction of ¹²C-spallation by analysis
- Characterization of ¹³⁶Xe spallation
- Improve KamL-400 results by ~4X in 5 y

$$\rightarrow$$
 m _{$\beta\beta$} < 30 – 80 meV
J. Phys.: Conf. Ser. 1468 012142 (2020)

KamLAND2-Zen

Data taking Advanced R&D

Completed

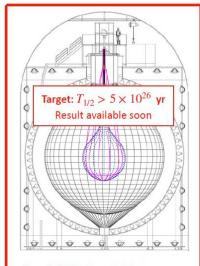
KamLAND-Zen 400 \rightarrow KamLAND-Zen 800 \rightarrow KamLAND2-Zen

3 neutrinos and beyond, K. Ueshima, 2019

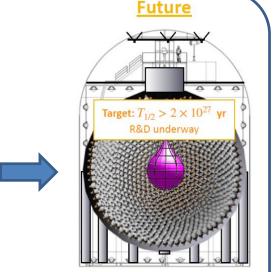
KamLAND2-Zen

- Larger source 5X brighter \rightarrow 2X better Δ E
- $m_{\beta\beta}$ < 20 meV

Directions of improvement


- $> 1000 \text{ kg of } ^{136}\text{Xe}$
- Reduce ²¹⁴Bi background
- Reduce 2v2β background

5y sensitivity


 $T_{1/2} > 2 \times 10^{27} \text{ y}$ $m_{\beta\beta}$ < 14 – 37 meV

Present

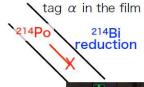
KamLAND-Zen 800:

- · Mini-balloon Radius = 1.90 m
- Xenon mass = 745 kg
- Data taking starts Jan. 2019

KamLAND2-Zen:

- Aiming at 100% Photocoverage
- · PEN scintillation balloon film

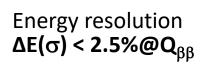
Reduce ²¹⁴Bi background


Identify BiPo events in balloon

Tag α 's with a film on balloon

scintillator film

Reduce $2v2\beta$ background


Improve energy resolution

Increase light yield

- Brighther scintillator (x 1.4)
- High Q.E. 20" PMT (22% \rightarrow 30%) (x 1.9)
- Winstone cone for light collection (1.8)

Ultimate background: elastic scattering of solar v's on e

Further evolutions

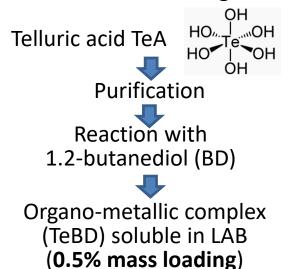
Possibility to include scintillating inorganic crystals embedding other 2β candidates Ambitious long-term developments: Super-KamLAND-Zen – a few tens of tons of Xe in a 20 kton detector

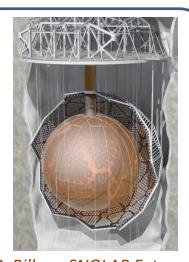
SNO+

SNO+ → SNO+-phase II

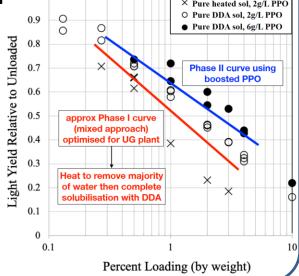
Concept

arXiv:2104.11687v2


Reuse the acrylic vessel, the PMT array and the electronics of the SNO detector at SNOLAB with a new target:

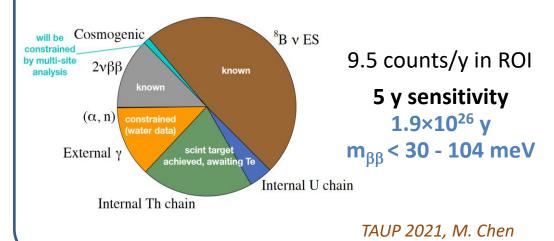

natural-Te-loaded liquid scintillator (LAB + 2g/l PPO "fluor")

- 780 tons of scintillator
- 3.9 tons of natural tellurium
- \rightarrow **1.3** tons of ¹³⁰Te (34% I.A.)


→ Scintillator purification system

→ Novel metal loading technique 1

S.B. Biller – SNOLAB Future Project Workshop – May 2021

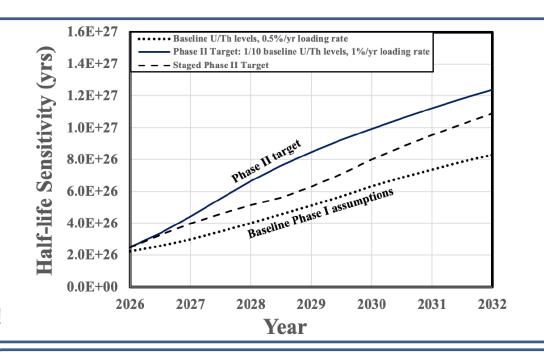


SNO+ consists of **three phases**

- Pure-water phase (from May 2017)
 - → measurement of the external background
 - \rightarrow physics results (8B v's, invisible nucleon decays)
- Liquid scintillator phase without Te (ongoing)
 - → measurement of scintillator background
 - \rightarrow U, Th concentration $\sim 5 \times 10^{-17}$ g/g
 - \rightarrow Background level low enough for $0\nu\beta\beta$
- **Te phase** (from 2022) Study of $2\nu\beta\beta$ and $0\nu\beta\beta$

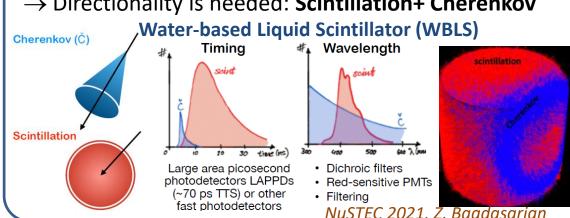
 $\Delta E = 190 \text{ keV FWHM } @Q_{\beta\beta}$

Background budget and sensitivity


SNO+ and evolutions

SNO+ \rightarrow **SNO+-phase II** \rightarrow THEIA, ZICOS

SNO+-phase II (start in 2026)


5 y sensitivity

- $1 \times 10^{27} \text{ y}$ $0.5\% \rightarrow$ **3%** Te concentration
- $m_{\beta\beta} < 13 45 \text{ meV}$ Improve transparency
 - No changes to underground set-up
 - No changes to loading method
 - Increase PPO to ~6g/L
 - Adiabatically increase Te loading towards ~ 3%
 - Loading rate depends on staging and system throughput (project 0.5% per 6-9 months)
- 3% Te concentration \rightarrow 24 t of Te / 8 t of ¹³⁰Te
- → 70% "thrown away" by fiducial cuts but still cost effective!

Scaling up towards NO is limited by solar v's background

→ Directionality is needed: **Scintillation+ Cherenkov**

THEIA – multipurpose neutrino detector

DUNE cavern

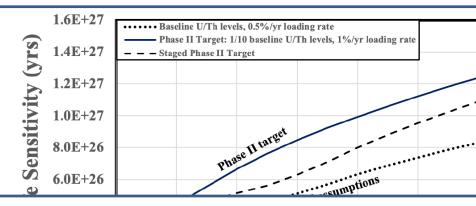
KAMIOKA

- 50 kt WBLS 16 m radius balloon with isotope
- 5% natural Te loading 10 y sensitivity: 1.1×10²⁸ y
- Another option: 3% enriched ¹³⁶Xe loading

TAUP 2021, Y. Fukuda

ZICOS – **Zr-loaded liquid scintillator detector**

- 180 t total 3.5 m radius inner balloon with isotope
- 10 wt.% Zr(iprac)4 loaded in liquid scintillator 50% ⁹⁶Zr
- 1.7 t of loaded LS \rightarrow 865 kg of 96 Zr
- Cherenkov+Scintillation demonstrated in protoypes
 - \rightarrow topological background rejection Sensitivity: 1×10²⁷ y


SNO+ and evolutions

 $SNO+ \rightarrow SNO+-phase II \rightarrow THEIA, ZICOS$

- $0.5\% \rightarrow 3\%$ Te concentration 1×10^{27} y
- Improve transparency $m_{\beta\beta}$ < 13 45 meV No changes to underground set-up No changes to loading method Increase PPO to ~6g/L

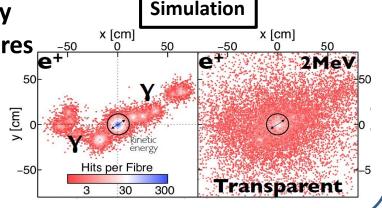
Adiabatically increase Te loading towards ~ 3%

LiquidO

R&D activity based on the well-known liquid scintillator technology

Radical change of paradigm: Opaque scintillator + tight array of fibres

conventional paradigm of transparency is abandoned

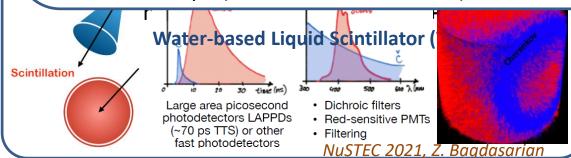

scintillation light is confined and collected near its creation point

Target loading fractions: 5-30 % (vs. current 1-3 %)

Transparency constraint is relaxed

~10 ton isotope (130Te, 82Se, 100Mo, 150Nd)

Prototype at Bordeaux

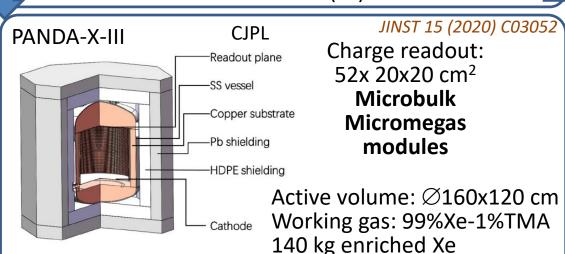


r detector

ZICOS - Zr-loaded liquid scintillator detector

- 180 t total 3.5 m radius inner balloon with isotope
- 10 wt.% Zr(iprac)4 loaded in liquid scintillator 50% ⁹⁶Zr
- 1.7 t of loaded LS \rightarrow 865 kg of ⁹⁶Zr
- Cherenkov+Scintillation demonstrated in protoypes

 → topological background rejection Sensitivity: 1×10²⁷ y



Other gas TPC experiments

High pressure (10-15 bar) enriched Xe gas TPC

NEXT technology, with variants, is adopted by

- PANDA-X-III electron collection
- AXEL electroluminescence (EL)

 $\Delta E = 3\%$ FWHM $@Q_{\beta\beta}$ – Signal efficency = 35% Background index ~10⁻⁴ c/(keV kg yr) after topological cuts

3 y sensitivity: 8.5×10^{25} y $m_{BB} < 68 - 180$ meV

Future extension:

PANDA-X-III 1t Ton scale detector Several modules Special readout for EL 25
Electroluminescence
Light Collection Cell
(ELCC)

10mm-pitch

Drift anode electrode

PTFE w/ holes

Mesh electrode

MPPC (pholon sensor) array

X-axis

2.5kV/cm/bar ~0.1kV/cm/bar

Proof of principle in 10L prototype Extrapolated energy resolution: $\Delta E = 0.82-1.74 \%$ FWHM $@Q_{\beta\beta}$ 180L set-up under development

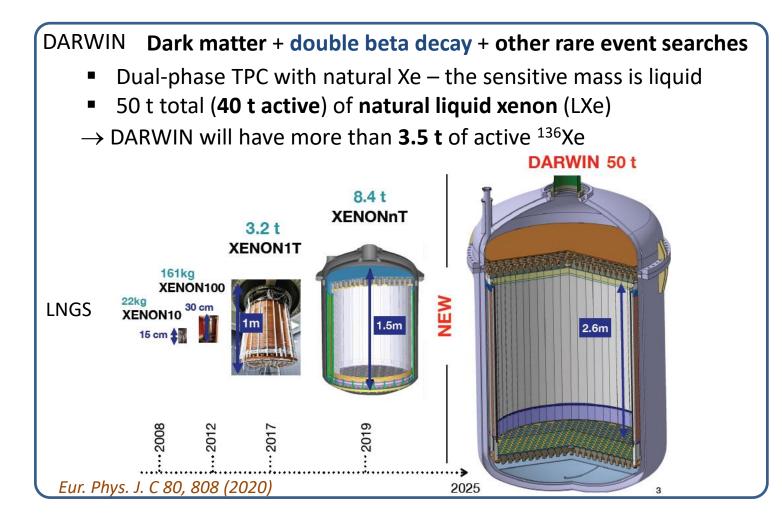
NvDEX High pressure 82SeF₆ TPC

CJPL

- Same gas used to enrich Se \rightarrow in principle extendable to Te, Mo
- SeF₆ does not admit free electrons → Ion TPC
- Collect and read-out ions without multiplication with CMOS technology
- Topology and good energy resolution
- 100 kg set-up under development


R2D2 Spherical high pressure (40 bar) Xe gas TPC

Simple readout and mechanics Light readout Primary scintillation


+ EL during avalanche

 \emptyset 40 cm prototype under test

Prove zero background with \emptyset 74 cm \rightarrow 50 kg Xe \emptyset 40 bar

Dual-phase Xe TPC experiments

Main background sources

- ²²²Rn in LXe
- ¹³⁷Xe from μ-induced neutrons
- 8B Solar neutrinos

Fiducial volume: 5 t

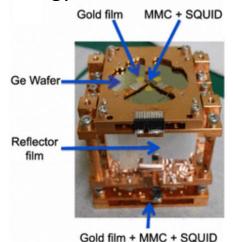
Background: 0.2 c/(ton y) in ROI

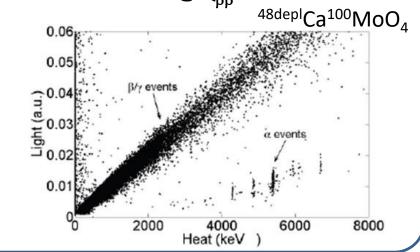
10 y sensitivity: $T_{1/2} > 2.4 \times 10^{27}$ y $m_{\beta\beta} < 11 - 35$ meV

Similar calculations from PANDAX-4T (3.7 t) and LZ (10 t) with sensitivities two orders of magnitude lower

Ke Han, TAUP 2021 arXiv:2104.13374

AMORE

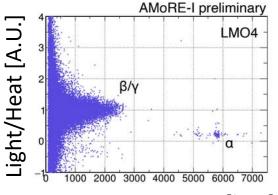

JINST 15 C08010 (2020) J. Phys.: Conf. Ser. 1468, 012130 (2020)


$AMORE-I \rightarrow AMORE-II$

AMoRE – Y2L Lab (AMORE-I), Yemilab (AMORE-II), Korea Concept

- ¹⁰⁰**Mo**-containing scintillating bolometers
- Initially chosen compound (AMoRE pilot R&D): 48deplCa¹⁰⁰MoO₄
 - \rightarrow high light yield, excellent α/β separation by PSD and light yield
 - → challenging internal contamination (²³⁸U chain)
- ^{48depl}Ca¹⁰⁰MoO₄ has been accompanied by Li₂¹⁰⁰MoO₄ in AMORE-I
- Li₂¹⁰⁰MoO₄ is currently the only compound foreseen in **AMORE-II**
- Heat readout based on MMC sensors (faster than CUORE/CUPID)
 - $\rightarrow 2\nu\beta\beta$ random coincidences provide negligible background

Energy resolution $\Delta E \sim 10-15$ keV FWHM @Q₆₈

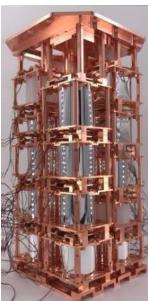


AMORE-I – started in Aug 2020 - stop in 2022

 $13x^{48\text{depl}}\text{Ca}^{100}\text{MoO}_{4}$ (CMO, 4.6 kg) 5x Li₂¹⁰⁰MoO₄ (LMO, 1.6 kg)

3 kg of ¹⁰⁰Mo

Target BI: $< 10^{-2}$ counts/(keV kg y)


Projected sensitivity: 7×10^{24} y $m_{\beta\beta} < 130 - 250$ meV

AMORE-II - 2022 - 2027

Secured **110 kg of** 100 Mo – 596x Li₂ 100 MoO₄ crystals New cryostat and underground lab – work in progress

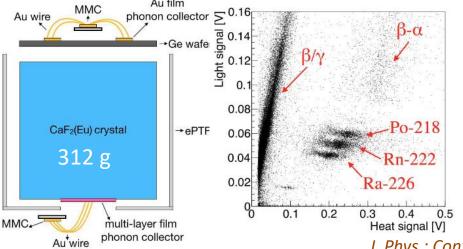
Target BI: $< 10^{-4}$ counts/(keV kg y)

Projected sensitivity: 8×10^{26} y $m_{\beta\beta} < 13 - 25$ meV

Other bolometric experiments

CANDLES

CANDLES-III Pure scintillation experiment with CaF₂(Eu) crystals

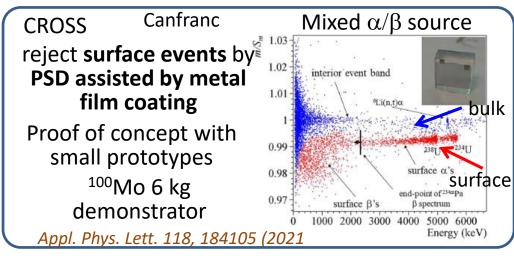

Natural crystals – 96x 3.2 kg \rightarrow only **350 g of** ⁴⁸Ca

KAMIOKA

New phase of the experiment \rightarrow CANDLES-IV

- Study the possibility of enrichment with Laser Isotopic Separation
- Move to scintillating bolometers (as CUPID, AMORE)
 - high energy resolution
 - α/β rejection

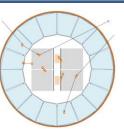
Preliminary encouraging results with large crystals (MMC technology)



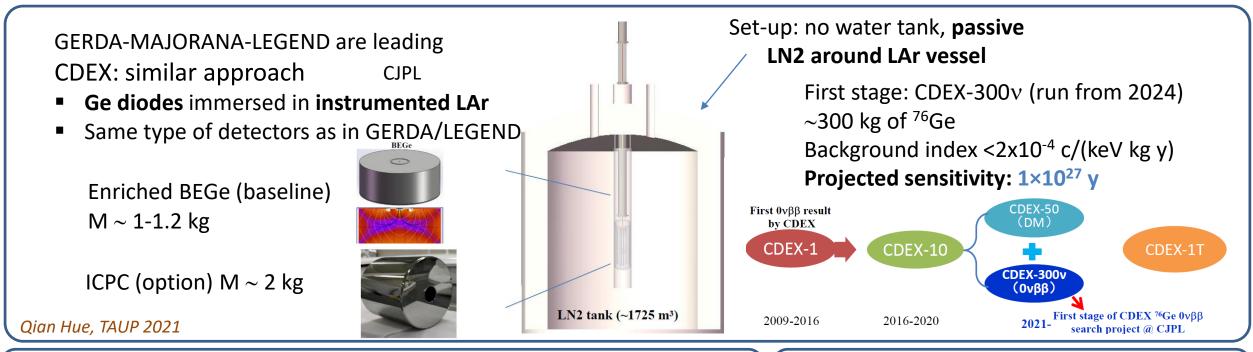
Modest energy resolution $\sigma = 3.2\% @ 4.9 \text{ MeV}$

Position dependence

J. Phys.: Conf. Ser. 1468 (2020) 012116


Techniques for background rejection in future TeO₂ / Li₂MoO₄ based experiments

BINGO Modane Luminescent bolometers


- Internal active shield (ultrapure ZnWO₄ scintillators)
 → mitigate γ background in TeO₂
- Revolutionary assembly to reject surface background
- Enhanced-sensitivity light detectors

C, Nones, TAUP 2021

Other semiconductor-based experiments

SELENA Innovative approach

Amorphous 82Se x-ray detectors (0.2 mm thick) +HVReadout: CMOS pixel array

Stack to achieve high density, high mass array

- 5 μm pixel size gives full track reconstruction
- Industrial production
- Very promising for background control ~0.001 c/(FWHM t y)


JINST 12 (2017) P03022

Integrated electronics CMOS pixel array 100 cm² x 5 µm E field Amorphous 82Se (200 µm thick) (30 nm)

COBRA CdZnTe detector technology

Several $\beta\beta$ isotopes – ¹¹⁶Cd most promising

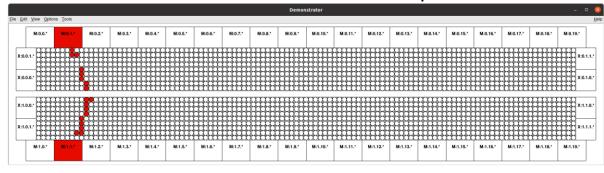
- Demonstrator: 64x 1 cm³ detectors
- Recent upgrade: 9x 2x2x1.5 cm³ detectors

Improvements in energy resolution and background

NIMA 1010 (2021) 165524

SuperNEMO

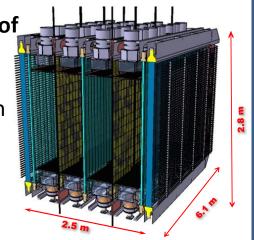
Tracker-Calorimeter Technique


- Foils can be made of any solid $\beta\beta$ isotope (SuperNEMO uses ⁸²Se)
- Identification of e^- , e^+ , γ and $\alpha \rightarrow$ leads to excellent background rejection.
- Event topology reconstruction (energies, angles).
- $e-\gamma$ separation can probe decays to excited states

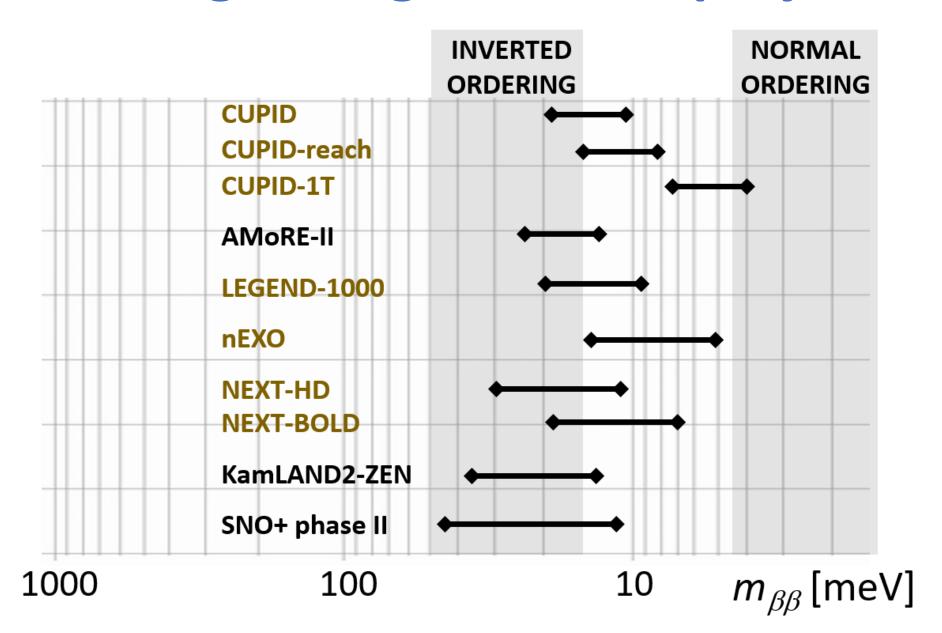
SuperNEMO demonstrator status

Modane

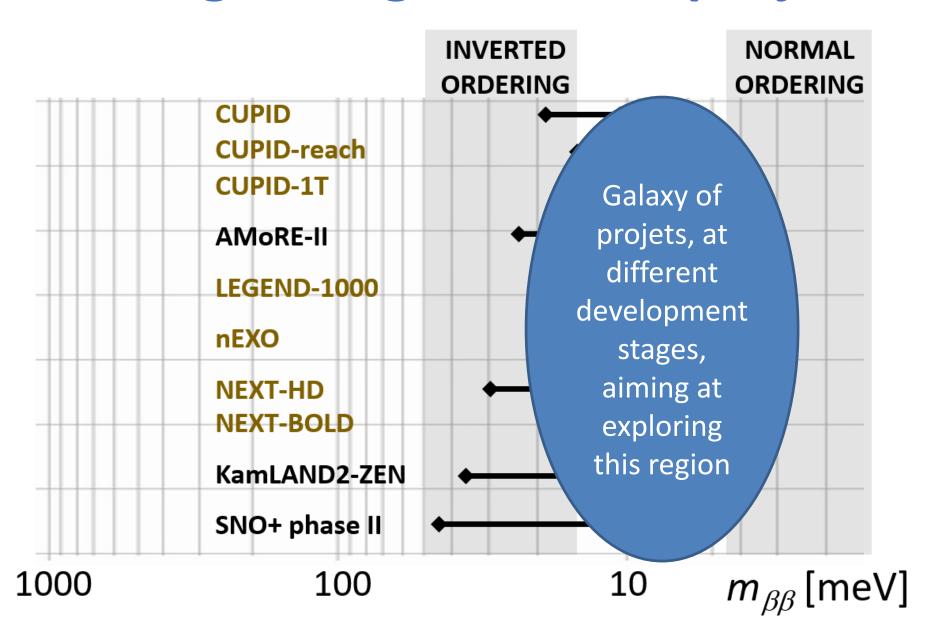
- Final commissioning.
- First tracker-calorimeter data September 2021


First $\beta\beta$ candidate event,
9/9/21

Current role of SuperNEMO Providing Supporting Measurements


- Precision measurements of 2vββ
 - g_A quenching constraints (NEMO-3 analysis in preparation)

Understanding the Ultimate Reach of the Tracker-Calorimeter Technique


- Can the technique be used to confirm & probe a signal found in the next generation of 0vββ experiments?
- Explore different detector technologies & isotopes

Promising next-generation projects

Promising next-generation projects

BACK UP

Neutrinoless double beta decay in a nutshell

$$0\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

$$2n \rightarrow 2p + 2e^{-}$$

Creation of matter without antimatter partners

Beyond Standard Model

Never observed – Best limits $\tau > 10^{24}$ - 10^{26} y

- ① Standard mechanism: neutrino physics $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate) Sometimes defined "mass mechanism"
- 2 Non-standard mechanisms: Sterile v, LNV Not necessarily neutrino physics

The only currently viable experimental approach to probe the Majorana nature of neutrino

Francesco Vissani, this workshop

Experiments measure / constrain τ Assuming mass mechanism, this translates into information on the effective Majorana mass m_{BB} $m_{\beta\beta}$ [meV] 1000 $\mathbf{m}_{\beta\beta} = |U_{e1}|^2 m_1 + e^{i\alpha 1} |U_{e2}|^2 m_2 + e^{i\alpha 2} |U_{e3}|^2 m_3$ $_{100}$ 1/ $\tau \propto m_{BR}^2$ Inverted Ordering (IO) 10 Normal Ordering (NO)

Phys. Rev. D90, 033005 (2014)

100

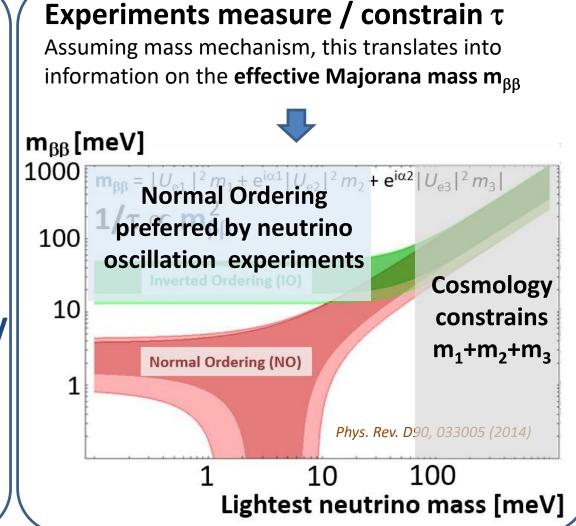
Lightest neutrino mass [meV]

Neutrinoless double beta decay in a nutshell

$$0\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

$$2n \rightarrow 2p + 2e^{-}$$

Creation of matter without antimatter partners


Beyond Standard Model

Never observed – Best limits $\tau > 10^{24}$ - 10^{26} y

- ① Standard mechanism: neutrino physics $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate) Sometimes defined "mass mechanism"
- 2 Non-standard mechanisms: Sterile v, LNV Not necessarily neutrino physics

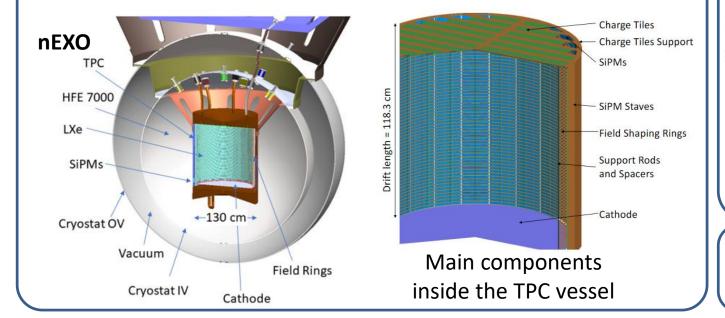
The only currently viable experimental approach to probe the Majorana nature of neutrino

Francesco Vissani, this workshop

nEXO

$EXO-200 \rightarrow nEXO$

nEXO is built on the successful **EXO-200** – **WIPP, US**

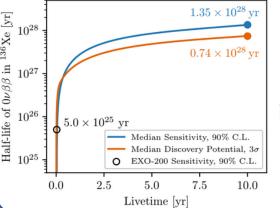

150 kg of
136
Xe $-T_{1/2} > 3.5 \times 10^{25}$ y $-m_{\beta\beta} < 93 - 286$ meV

First observation of $2\nu\beta\beta$ of ¹³⁶Xe (2011) – $T_{1/2}$ = 2.165×10²¹ y

Concept

Single phase enriched LXe TPC

- Energy resolution $\Delta E(\sigma) \sim 0.8\%@Q_{\beta\beta}$
- Measurement of both charge and scintillation
- Single site (including signal) vs. multi site events (background)
- Multi-dimensional analysis using energy, 3D position and topology


nEXO (under DoE Portfolio Review) – **SNOLab Major upgrades with respect to EXO-200**

- More isotope $\sim 5000 \text{ kg of }^{136}\text{Xe}$
- Improvement in light sensors (LAAPDs→SiPM)
- Increased light collection
- Improvement in radiopurity (electroformed Cu)
- Cold electronics

	EXO-200	nEXO
Fiducial Mass [kg]	74.7	3281
Energy resolution σ/Q _{ββ} [%]	1.2%	0.8%

LXe self shielding

preCDR - arXiv:1805.11142v2 arXiv:2106.16243

Background dominated by Rn outgassing and intrinsic radioactivity

Equivalent background index: 7×10⁻⁵ c/keV kg y)

10 y sensitivity

$$1.35 \times 10^{28} \text{ y}$$
 $m_{\beta\beta} < 5 - 15 \text{ meV}$

Tagging of individual ¹³⁶Ba daughter

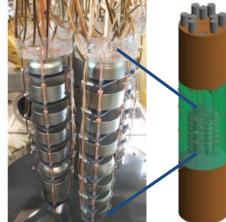
Demonstrated by

 136 Xe \rightarrow 136 Ba + 2e⁻

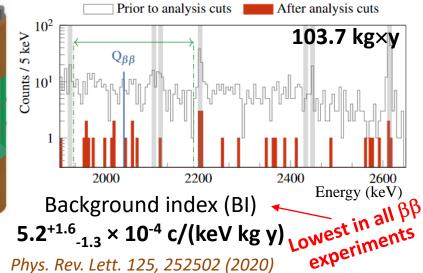
fluorescence in solid Xenon Nature 569, 203–207 (2019)

GERDA → **LEGEND**

GERDA
MAJORANA dem.


 \rightarrow LEGEND-200 \rightarrow LEGEND-1000

GERDA - LNGS, Italy $T_{1/2} > 1.8 \times 10^{26} \text{ y} - m_{\beta\beta} < 79 - 180 \text{ meV}$ 35 kg of ⁷⁶Ge – Leading experiment in terms of half-life


Concept

High purity naked Ge detectors immersed in instrumented LAr

- Energy resolution $\Delta E \sim 3 \text{ keV FWHM } @Q_{BB}$
- Pulse shape discrimination: multi site vs. single site events
- Anticoincidence with LAr active shield, instrumented with
 - Wavelength shifting fiber shroud coupled to SiPMs
 - PMTs on top and bottom of the setup

37 HP Ge detectors

LEGEND-200 combines the best of GERDA and MJD

- Adopt GERDA detector configuration
- Reuse GERDA infrastructure at LNGS (after upgrade)
- Follow MJD selection of radiopure parts
- MJD electronics and low threshold
- ⁷⁶Ge: 35 kg from GERDA, 30 kg from MJD
 140 kg are new material
- New detector type, already tested in GERDA ICPC detector, > 2 kg vs. previous 0.7-0.9 kg
- → same energy resolution and PSD capability **Commissioning:**

Detector deployment starts in Sep 2021 Data taking: end 2021 / beginning 2022

AIP Conference Proceedings 1894, 020027 (2017)

LEGEND-1000 (under DoE Portfolio Review) Discovery

- Same technology, new larger infrastructure
- Phased approach, up to 1000 kg of ⁷⁶Ge Background
- Site to be decided baseline: SNOLAB free approach

LEGEND-200	LEGEND-1000
BI: 2× 10 ⁻⁴ c/(keV kg y)	BI: 10 ⁻⁵ c/(keV kg y)
$T_{1/2} > 10^{27} y - 5 y live time$	$T_{1/2} > 1.3 \times 10^{28} - 10 \text{ y live time}$
$m_{\beta\beta}$ < 34 – 78 meV	$m_{\beta\beta}$ < 9 – 21 meV

arXiv:2107.11462v1

sensitivity

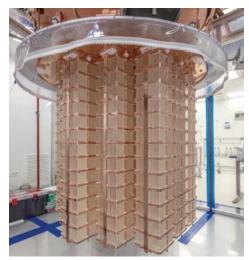
CUORE \rightarrow CUPID

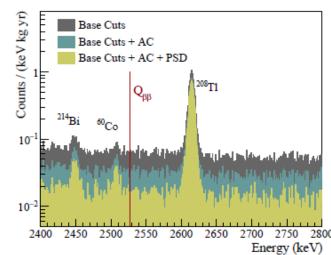
CUPID-Mo CUPID-0

→ CUPID → CUPID Reach / CUPID-1T

CUORE

CUORE - LNGS, Italy $T_{1/2} > 2.2 \times 10^{25} \text{ y} - m_{\beta\beta} < 90 - 305 \text{ meV}$


Exposure: 1038.4 kg \times y – Record for a bolometric experiment


Concept

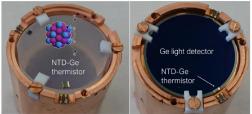
arXiv:1907.09376

Array of natural TeO₂ crystals operated as bolometers at 10 mK

- Built on the precursor CUORICINO experiment
- 988 TeO₂ crystals, arranged in 19 towers 206 kg of ¹³⁰Te
- Energy resolution $\Delta E \sim 7.8$ keV FWHM $@Q_{\beta\beta} Q_{\beta\beta} = 2527$ keV Background index **1.49** × **10**⁻² **c/(keV·kg·y)**
- - Dominated by energy-degraded surface α 's

Target half-life sensitivity: 9×10²⁵ y

CUPID-Mo - LSM, France


Exposure: $2.71 \text{ kg} \times \text{y}$

 $T_{1/2} > 1.8 \times 10^{24} \text{ y}$ $m_{\beta\beta} < 280 - 490 \text{ meV}$

Concept ← LUMINEU R&D

2 changes wrt CUORE:

(1) Pure bolometers \rightarrow **Scintillating bolometers** Phys. Rev. Lett. 126, 181802 (2021)

 $(2)^{130}$ Te (TeO₂) \rightarrow 100 Mo (enriched Li₂MoO₄) Q_{BB} =3034 keV > 2.6 MeV (reject external γ background)

20 Li_2MoO_4 crystals – 2.26 kg of ¹⁰⁰Mo

Energy resolution $\Delta E \sim 7.8 \text{ keV FWHM } @Q_{BB}$ Reject $2\nu\beta\beta$ decay of ¹⁰⁰Mo Counts/keV background background free after light cut Heat Energy [keV]

CUPID-0 - LNGS, Italy Zn82Se First scintillating

bolometer demonstrator

🌊. Pagnanini, this conference $T_{1/2} > 4.7 \times 10^{24} \text{ y}$

Small scale demonstrators

CUORE → CUPID

CUPID-Mo CUPID-0 CUORE

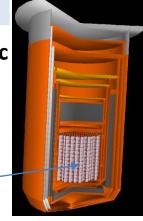
→ **CUPID** → CUPID Reach / CUPID-1T

CUPID (under DoE Portfolio Review) – **LNGS, Italy**

Concept

- Single module: Li₂¹⁰⁰MoO₄
 45×45x45 mm − ~ 280 g
- 57 towers of 14 floors with2 crystals each 1596 crystals
- ~240 kg of ¹⁰⁰Mo with >95% enrichment
- ~1.6×10²⁷ 100 Mo atoms
- Bolometric Ge light detectors as in CUPID-Mo, CUPID-0

Copper str


arXiv:1907.09376

CUPID is built on successful CUPID-Mo + CUORE

 $\text{Li}_{2}\text{MoO}_{4}$ scintillating bolometer technology, with demonstration of energy resolution, crystal radiopurity and α rejection

Ton-scale bolometric experiment is possible Electronics and data analysis tools Reuse CUORE

infrastructure

CUPID sensitivity

Data driven background model

- Information from CUPID-Mo, CUPID-0
- CUORE background model (same infrastructure!)

Projected background index: 1×10⁻⁴ c/(keV kg y)

Critical background component: random coincidence of $2\nu\beta\beta$ events (100 Mo fastest $2\nu\beta\beta$ emitter: $T_{1/2} = 7.1 \times 10^{18}$ y)

10 y discovery sensitivity $m_{\beta\beta} < 12 - 20 \text{ meV}$

Possible follow-up of CUPID

CUPID-reach - Same sensitive mass and cryostat as CUPID Background improvement by factor 5 Criticalities:

 $2.3 \times 10^{27} \text{ y} \rightarrow \text{m}_{ee} < 7.9 - 14 \text{ meV}$

- 2νββ

CUPID-1T - 1 ton isotope → new cryostat Background improvement by factor 20

Surface events

 $9.2 \times 10^{27} \text{ y} \rightarrow \text{m}_{ee} < 4.0 - 6.9 \text{ meV}$

Intense R&D to improve background in Li₂MoO₄ and TeO₂ based bolometric experiments

CROSS → reject surface events by PSD assisted by metal film coating

BINGO →

- Internal active shield (ZnWO₄ scintillators)
- Enhanced-sensitivity light detectors

Revolutionary detector assembly