

Large Enriched

Germanium Experiment

for Neutrinoless BB Decay

LEGEND-1000

Stefan Schönert for the LEGEND Collaboration

30 Sept. 2021

North America - Europe Workshop on Future of Double Beta Decay

GFRD4

The LEGEND Collaboration

- The goal of the LEGEND Collaboration is to design, construct, and field LEGEND-1000, a ton-scale experiment
 - "The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."
- The LEGEND collaboration was formed in 2016 through a merger of the MAJORANA and GERDA collaborations, along with several new institutions
- It includes 266 members, 48 institutions, 11 countries

The LEGEND Collaboration

"The collaboration aims to develop a phased, ⁷⁶Ge-based double-beta decay experimental program with <u>discovery potential</u> at a half-life beyond 10²⁸ years..."

- What is required for a discovery of $0\nu\beta\beta$ decay at a half-life of 10^{28} years?
- This is less than one decay per year per ton of material
 - Need 10 ton-years of data to get a few counts
 - Need a good signal-to-background ratio to get statistical significance
 - A very low background event rate
 - The best possible energy resolution

- Background-free: Sensitivity rises linearly with exposure Background-limited: Sensitivity rises as the square root of exposure
- Our background goal is the red line, 0.025 counts/(FWHM t y), "quasi-background-free"
 - Less than one background count expected in a 4σ Region of Interest (ROI) with 10 t y exposure (FWHM: Full Width at Half Maximum; 2.355 σ for a Gaussian peak)

Why Germanium?

- Solid basis for unambiguous discovery
 - Superb energy resolution: $\sigma / Q_{\beta\beta} = 0.05 \%$
 - Therefore, no background peaks anywhere near the energy of interest
 - Background is flat and well understood
 - Background will be measured, with no reliance on background modeling
 - All this leads to an excellent likelihood that an observed signal will be *convincing*
- Low risk, high impact
 - Demonstrated performance of the entire technology chain
 - GERDA has produced the lowest background per FWHM of any experiment
 - MAJORANA has produced the best resolution
 - Requires no extrapolation from current detector performance
 - Proven track record, with history of leading limits
 - The team is experienced and ready to transition from LEGEND-200 construction to LEGEND-1000
 - A stable cost estimate, with appropriate contingency

LEGEND-1000: A discovery experiment for 0vββ of ⁷⁶Ge LEGEND

je at $Q_{\beta\beta}$ = 2039.06 keV

Innovation toward LEGEND-1000

The LEGEND-1000 design builds on a track record of breakthrough developments

- GERDA : BEGe, LAr instrumentation, cryostat in water shield, fast detector deployment, ...
- MAJORANA DEMONSTRATOR (MJD): PPC, EFCu, lownoise front-end electronics,...
- LEGEND-200 (commissioning 2021): Inverted-Coaxial Point Contact (ICPC) detectors, polyethylene naphthalate (PEN)...

MJD

PPC: p-type Point Contact Ge detectors BEGe: (modified) Broad Energy Ge detectors EFCu: Electroformed copper

- P-type detectors: Insensitive to alphas on n⁺ contact
- Small p⁺ contact: Event topology discrimination
- Large-mass ICPC detectors: About 4 times lower backgrounds with respect to BEGe/PPC
- Proven long-term stable operation in liquid argon

Innovation toward LEGEND-1000: Ge Detectors

Event Topologies

$0\nu\beta\beta$ signal candidate (single-site)

$$Q(t) = -q\phi_w(\boldsymbol{x}_q(t))$$

 ϕ_w

Innovation toward LEGEND-1000: Ge Detectors

Event Topologies

$0\nu\beta\beta$ signal candidate (single-site)

Shockley-Ramo Theorem: Weighting Potential:

$$Q(t) = -q\phi_w(\boldsymbol{x}_q(t))$$

$$\phi_w$$

Stefan Schönert | LEGEND | 2021-09-30

Event Topologies

$0\nu\beta\beta$ signal candidate (single-site)

γ-background (multi-site)

$$Q(t) = -q\phi_w(\boldsymbol{x}_q(t))$$
 ϕ_w

Event Topologies

$0\nu\beta\beta$ signal candidate (single-site)

γ-background (multi-site)

$$Q(t) = -q\phi_w(\boldsymbol{x}_q(t))$$

 ϕ_w

Event Topologies

Surface- β -background ⁴²K (⁴²Ar) on n+ contact

 $\alpha\text{-background}$ on p+ contact

$$Q(t) = -q\phi_w(\boldsymbol{x}_q(t))$$

 ϕ_w

Innovation toward LEGEND-1000: LAr Instrumentation

GERDA: Detection of liquid argon scintillation light

Low-background wavelength-shifting fibers and SiPM arrays for 128 nm single photon detection

MJD: Low noise front-end electronics required for

2021-09-30

LEGEND

Stefan Schönert

- Minimize materials close to Ge detectors and use of highest purities:
 - Underground electroformed copper (EFCu) reduces U, Th, and cosmogenic activation

 $< 0.017 \pm 0.03$ pg/g 238 U

 $< 0.011 \pm 0.05$ pg/g $^{232} Th$

- Copper-Kapton laminated cables
- Optically active structural materials:
 - Polyethylene naphthalate (PEN) shifts 128 nm LAr scintillation light to ~440 nm and scintillates
 - Yield strength higher than copper at cryogenic temperatures

EFCu for holders and reentrant tube

PEN: scintillating (self-vetoing) high-purity detector support

Machining

Cleaning

Innovation toward LEGEND-1000: LEGEND-200

- Procurement of ⁷⁶Ge (92% enr.)
- Novel ICPC detectors
- Improved LAr system
- Low-background materials
- Commissioning 2021

The Baseline Design: Ge-76 Acquisition & Processing

1000 kg of enriched Ge detectors:

- Fabricate 870 kg of new detectors; use 130 kg from LEGEND-200; recycle 50 kg of small detectors
- Procure 1100 kg of enriched Ge (92% ⁷⁶Ge)
- 220 kg/y for 5 years through ECP(JSC) & Urenco
- No interference of world annual production (130 t/y)
- enr Ge metal production (50 Ω -cm) and chemical recycling at VPMS^{1,2}
- LEGEND-200 experience:
 - Reliable production of 185 kg enriched isotope from ECP(JSC) and Urenco
 - Zone refinement at VPMS (and IKZ¹)
 - Chemical purification and recovery at VPMS & LNGS¹

¹ Technology expertise also internal to LEGEND: IKZ, INR, USD, USC ² Purification system at VPMS owned by UNC

The Baseline Design: Detector Arrays

ICPC detector assembly:

- 2.6 kg average mass
- EFCu
- PEN
- ASIC front end
- Flat flex cables

Detector arrays:

- 4 arrays
- 100 ICPCs / array
- 1000 kg total mass
- 0.12% FWHM (0.05% $\sigma)$ at $Q_{\beta\beta}$
- Double-barrel LAr instrumentation
- Underground argon
- Reentrant tubes

ICPC detector production:

- Two established vendors plus 2 additional vendors
- 1st year: 50 detectors / y
- Subsequent years: 110 / y
- LEGEND-1000 staged approach: Detectors for first module are ready 2.5 years after start of production

The Baseline Design: Front-End Electronics & DAQ

1400

1600

Front-end CSA ASIC:

- Low noise / threshold: <1 keV
- Large dynamic range: 10 MeV
- Sufficient bandwidth: 50 MHz
- Detector capacitance:

5 pF

Data Acquisition:

Full digitization of Ge, LAr system, water Cherenkov systems

• Off-line filtering

• LEGEND-1000 DAQ built on LEGEND-200 design; successfully operated during Post-GERDA Test (PGT)

200

400

600

800

Time [ns]

1000

1200

1000

200

0

The Baseline Design: Underground Liquid Argon

- L1000 needs 20-25 t of UGLAr
- Builds on pioneering work of DarkSide collaboration
- UGAr will be mined at Urania facility (U.S.) 95 t/y
- Logistics and storage technology under development by DarkSide/ARGO collaboration for LNGS and SNOLAB
- Expression of interest from INFN president¹ and DarkSide leadership
- UGAr production for LEGEND-1000 in 2023 (after DS-20k)

UGAr is depleted in ⁴²Ar (³⁹Ar)

lso- tope	Abun- dance	Half-life (<i>t</i> _{1/2})	Decay mode	Pro- duct
³⁶ Ar	0.334%	stable		
³⁷ Ar	syn	35 d	8	³⁷ Cl
³⁸ Ar	0.063%	stable		
³⁹ Ar	trace	=== 269 y=	₽≡===	³⁹ K
⁴⁰ Ar	99.604%	stable		
⁴¹ Ar	syn	109.34 min	β-	⁴¹ K
⁴² Ar	syn	=== 32.9 y =	= β =====	⁴² K

¹ "...we are confident that the production of the required UAr can be completed in a time scale useful for the accomplishment of the LEGEND-1000 experiment.. The present statement is an expression of interest and availability from INFN..."

Crvopit

- SNOLAB (Canada) baseline site
- Rock overburden: 6000 m.w.e.
- Access through mine shaft
- All experimental areas class 2000 clean rooms
- Cryopit committed for ton-scale 0vββ experiment
- LNGS (Italy) alternative site

Detector Layout Concepts Change for Different Sites

SNOLAB – baseline 7-m diameter cryostat geometry at SNOLAB

- Water tanks minimize the contribution of fission neutrons from rock and surroundings
- Argon-cryostat size influences the number of secondary particles (neutrons, gammas, ...) per incoming muon; doubling the argon shield doubles the total number of neutrons;
- LNGS can accommodate 7-m baseline design as well as a 4 x 4-m diameter cryostat alternative design (smaller argon shield requires increased copper internal liner)

LNGS Hall C - baseline 7-m diameter cryostat design re-purposing the BOREXINO water tank LNGS Hall A - design (4 additional 4-m diameter cryostats)

- At **SNOLAB depth** :
 - -5.8×10^{-8} cts /(keV kg yr)
 - 0.6% of the background budget; even assuming a large uncertainty, the in-situ background contribution remains small.
- At LNGS depth
 - Including a minimal implementation of delayed coincidence suppression, but no further measures,
 - 5.4 x 10⁻⁶ cts /(keV kg yr) (7-m baseline detector layout),
 2.0 x 10⁻⁶ cts /(keV kg yr) (4 x 4-m cryostats).
 - 20-50% of the total background budget
 - Adding neutron moderating materials in the LAr, tagging sibling neutrons in the LAr and in the Gd-loaded water shield, and using topology information
 - <1 x 10⁻⁶ cts /(keV kg yr) (7-m baseline detector layout)
 - This is < 10 % of the total background budget

2021-09-30

LEGEND

Stefan Schönert

The LEGEND-1000 Background Model

Designed for an Unambiguous Discovery

Stefan Schönert | LEGEND

2021-09-30

• $T_{1/2} \propto \mathcal{E}/N_{0\nu\beta\beta}$

- Background free → linear sensitivity growth
- 10²⁸ yr in discovery mode (x100 better than GERDA & MAJORANA)

LEGEND will explore uncharted territory and open new energy frontiers

New physics can manifest at any $T_{1/2}$ value!

3σ discovery sensitivity @ 10 ton-yr 1.3 10²⁸ yr

Sensitivity $m_{\beta\beta}$

Agostini, Detwiler, Benato, Menendez, Vissani

•
$$m_{\beta\beta} = m_e / \sqrt{G \ g_A^4 \ M^2 \ T_{1/2}}$$

- Inverted ordering: $m_{\beta\beta} > 18.4 \pm 1.3 \text{ meV}$
- M → 4 many-body methods, each with specific systematics (soon also ab initio)
- Multiple, different set of calculations for each many-body method and isotope

LEGEND will fully test inverted ordering and a large part of the normal ordering space Discovery sensitivity <18.4 meV for 3/4 many-body methods & 12/15 calculations

2021-09-30

LEGEND

Stefan Schönert

LEGEND Collaboration Organization

LEGEND-1000 International Project Organization

- Project Management Support Office
 - Maintain cost and schedule, develop tailored PM practices, and guide a disciplined, structured application
- Technical Coordination Council (modeled on the current Technical Council)
 - Chaired by Project Dir's; level-2 task leaders, representatives from PM Support Office and host laboratory
 - Meets weekly to plan and coordinate work, identify potential issues, and discuss schedule status

LEGEND-1000 International Project: WBS

- Includes the full scope and deliverables required to complete the project in the pCDR
- Product / Deliverable-oriented, regardless of contributor or funding
- Aligned along major subsystems

LEGEND-1000 International Project: SNOLAB (baseline site)

- Key Dates:
 - Tentative Project Start:
 - Module 1 Commissioning Complete:
 - Early Finish: Module 4 Commissioning Complete:
 - Late Finish (36 months of float):

Q1,FY22

 Q3,FY28
 81 months (relative to start)

 Q3,FY29
 97 months

 Q2,FY32
 133 months

LEGEND-1000 International Project: LNGS (alternative site)

- Near Critical Path: Installation of the Cryostat
- The commissioning of Module 1 initiates first science and is a priority objective for the project
- Installation schedule for start of module 1 reduced approx. by 1 year
- Cost saving using US DOE accounting and labor costs correspond to approx. 20 M\$
- Potential early start with design studies and material procurement of cryostat with European funding.

Conclusion

- LEGEND-1000 is optimized for a quasi-background-free $0\nu\beta\beta$ search
 - It builds on breakthrough developments by GERDA, MAJORANA, and LEGEND-200
 - Our background model is based on the demonstrated success of MAJORANA and GERDA, detailed simulations, and well-understood improvements
 - LEGEND has a low-risk path to meeting its background goal of 10⁻⁵ counts/(keV kg yr)
 - Low backgrounds, excellent resolution, and topology discrimination allow for an unambiguous discovery of $0\nu\beta\beta$ decay at $T_{1/2} = 10^{28}$ years
- The reference design plans for the instrument to be sited in the SNOLAB Cryopit (baseline site)
- Alternatively, the instrument can be sited at LNGS (Hall C) (alternative site)
- LEGEND-1000 International Project Organization established with ORNL as US DOE leadlab
- We have a strong, experienced, international collaboration that "aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

LEGEND-1000 Preconceptual Design Report: https://arxiv.org/pdf/2107.11462.pdf