CUPID: **CUORE Upgrade with Particle ID**

- Karsten Heeger co-Spokesperson Yale University - (US)
 - Maura Pavan co-Spokesperson
- Università di Milano Bicocca and INFN (ITALY)

CUPID Concept

rare events

Replace CUORE detector array of TeO₂ with new one, based on Li_2MoO_4 .

Same mass scale as CUORE: Build on experience in existing cryostat, with improved technology.

Existing cryogenic infrastructure: Was challenging for CUORE, now an established technology.

Additional detector functionality: particle identification through light read-out, 3 times higher # of channels.

K. Heeger and M. Pavan

A ton-scale high-resolution bolometer array for the search of 0vßß and other

No PID Q = 2527 keV < **2615 keV**

Incident

Radiation

K. Heeger and M. Pavan

North America - Europe Workshop on Future of Double Beta Decay 29 September – 1 October 2021

CUPID ¹⁰⁰Mo heat + light

(scintillating bolometer)

¹⁰⁰Mo **Q-value: 3034 keV**: β/γ background significantly reduced

CUPID Detector

Single Detector Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g Ge light detector as in CUPID-Mo, CUPID-0

Detector Array

~240 kg of ¹⁰⁰Mo with >95% enrichment

~1.6.10²⁷¹⁰⁰Mo atoms

57 towers of 14 floors with 2 crystals each, 1596 crystals

Opportunity to deploy multiple isotopes, phased deployment

North America - Europe Workshop on Future of Double Beta Decay 29 September - 1 October 2021

Tower

CUPID (CUORE Upgrade with Particle Identification)

Array of 1596 Li₂¹⁰⁰MoO₄ scintillating bolometers

Enriched to >95% in ¹⁰⁰Mo (240 kg of ¹⁰⁰Mo)

Isotope: ¹⁰⁰Mo with Q-value: 3034 keV:

 β/γ background significantly reduced favorable NME

Exploit Particle ID using scintillation bolometer technique Technique robustly demonstrated by CUPID-0 and CUPID-Mo

Reuse proven CUORE cryogenic infrastructure at LNGS for a cost-effective deployment

Add external muon veto, improved neutron shield

Scalable to 1-ton scale (CUPID-1T) technically possible

North America - Europe Workshop on Future of Double Beta Decay 29 September – 1 October 2021

Collaboration at LNGS

CUPID is next step in a series of bolometric experiments at LNGS: Cuoricino, CUORE, CUPID-0, CUPID

Collaboration has worked at LNGS for many years.

Established Italian-US partnership.

e Beta Decay 29 September – 1 October 2021

Strong support from the Lab in terms of services like ICP-MS, y-spectroscopy, electronics, cryogenics, clean rooms, etc

LNGS Scientific Committee gave its scientific approval in September 2020.

CUPID is allowed to use underground space and the CUORE infrastructure.

K. Heeger and M. Pavan

North America - Europe Workshop on Future of Double Beta Decay 29 September - 1 October 2021

7

Established Site and Infrastructure

CUPID is extremely well-leveraged and cost-effective: Existing experimental site, unique cryogenic infrastructure. LNGS provides technical and user support.

CUPID leverages on many years of work and investment from INFN and LNGS

K. Heeger and M. Pavan

North America - Europe Workshop on Future of Double Beta Decay 29 September – 1 October 2021

CUPID Science Program

Search for 0vßß decay

Precision two-neutrino double beta decay

- $2\nu\beta\beta$ and $0\nu\beta\beta$ decays to excited states
- **Majoron-emitting decays**
- Tests of Lorentz invariance and CPT violation
- Tests of fundamental principles
 - Electric charge conservation
 - Verification of the Pauli exclusion principles
- Tri-nucleon decay and baryon number conservation
- Light dark matter searches
- Supernova neutrino searches
- Solar axion searches
- Millicharged particles

All topics potential papers and student theses

Background Budget

Data-driven background model

 validated in multiple experiments 	Т
 measurements/limits for all materials to 	
be used in CUPID	

Well-defined path to reduce the **CUORE** backgrounds to the levels required for CUPID

- demonstrated required crystal purity levels
- holders U/Th contamination levels achieved in CUORE are sufficient for Crystals U+Th CUPID
- contamination in cryogenic shields is well understood
- pileup background is well understood and we have several well defined paths to achieve this

The path to achieve the CUPID background goal is well understood and conservative

K. Heeger and M. Pavan

CUPID (baseline) goal

North America - Europe Workshop on Future of Double Beta Decay 29 September – 1 October 2021

10

Background from ¹⁰⁰Mo 2vββ Pileup

¹⁰⁰Mo $2v\beta\beta$ half-life ~7 x 10¹⁸ yr

rate ~ 3 mHz/crystal pile-up events may populate the 0vββ ROI

Pile-up discrimination depends

LMO and light detector risetime and S/N read-out & DAQ band-width noise (vibration reduction) analysis algorithms

demonstrated

goal (test on-going)

< 1×10-4 counts/(keV·kg·yr) < 0.5 ×10-4 counts/(keV·kg·yr)

CUPID Sensitivity to 0vββ

CUPID Baseline

- Mass: 472 kg (240 Kg) of $Li_{2}^{100}MoO_{4}(^{100}Mo)$
- **10** yr runtime
- Energy resolution: 5 keV FWHM
- Background: **10**-4 cts/keV.kg.yr

CUPID Baseline Discovery Sensitivity

- $T_{1/2} > 1.1 \times 10^{27} \text{ yrs} (3\sigma)$
- m_{ββ} ~ 12-20 meV

CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

10⁻¹

 10^{-1}

 10^{3}

10²

10

 $m_{
m Beta}$ (meV)

projected sensitivity

North America - Europe Workshop on Future of Double Beta Decay 29 September – 1 October 2021

CUPID Sensitivity to 0vββ

Baseline

- Mass: 450 kg (240 Kg) of Li₂¹⁰⁰MoO₄(¹⁰⁰Mo) for 10 yrs
- Energy resolution: **5 keV** FWHM
- Background: 10-4 cts/keV.kg.yr
- Discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yr (3 σ)
- Conservative, limited R&D

Reach

- R&D for further background reduction by radio purity and reduce pileup background
- Discovery sensitivity $T_{1/2} > 2 \times 10^{27}$ yr (3 σ)

1-Ton

- 1000 kg of ¹⁰⁰Mo
- Discovery sensitivity $T_{1/2} > 8 \times 10^{27}$ yr (3 σ)

CUPID-1T is within technical reach, limited by timeline and cost

K. Heeger and M. Pavan

Timeline and Discovery Sensitivity

Discovery Sensitivity and Lifetime

2024: completion of CUORE data taking **2025:** start preparing cryostat for CUPID, modest modifications 2028: start of CUPID data taking

K. Heeger and M. Pavan

North America - Europe Workshop on Future of Double Beta Decay 29 September - 1 October 2021

Worldwide context

2030: new data and scientific results before the end of the decade in technically-driven schedule

CUPID Signal: Preparing for Discovery

- Example of toy experiments simulated for 10-year exposure and $T_{1/2}(^{100}Mo)=10^{27}$ years.
- If signal is seen, modular detector allows data taking with different isotopes.
- Envision CUPID to be part of a world-wide suite of experiments to discover $0\nu\beta\beta$.
- Multiple experiments will be needed to establish discovery.

15

Collaboration

A strong, international collaboration builds on Italian-US partnership

Countries	Authors
Italy	64
USA	42
France	25
China	10
Ukraine	5
Russia	4
Spain	1

US Institutions

Argonne National Laboratory Boston University California Polytechnic State University University of California, Los Angeles University of California, Berkeley Drexel University Johns Hopkins University Lawrence Berkeley National Laboratory Massachusetts Institute of Technology University of South Carolina Northwestern University Virginia Polytechnic Institute and State Univers Yale University

https://cupid.lngs.infn.it/

K. Heeger and M. Pavan

Collaboration

Collaboration structure and agreement reflect (expected) resources and financial commitment of countries

Project management has line responsibility for country's scope.

Inclusive collaboration, leverages international expertise, moderately correlated to funding.

Other participants: Russia, Ukraine, China, Spain

Major participants: Italy (~60 authors), US (~40 authors), France (~25 authors)

North America - Europe Workshop on Future of Double Beta Decay 29 September - 1 October 2021

Project Structure

K. Heeger and M. Pavan

Project structure reflects Italian-US scope.

Project & WBS

what we have to do:

- array of 1596 LMO scintillating bolometers
- upgrade the cryogenic infrastructure
- install a muon veto + improve neutron veto

all these activities are organized in a **WBS** a *human readable version* in backup slides

here the message is:

- all the needed activities are identified, described and organized
- for each activity we have one or more responsible
- the needed budget is known and detailed

Design Parameters

LMO crystals mass & i.a.

LMO performances

Parameter	Value	Parameter	Value
Crystal	Li ₂ ¹⁰⁰ MoO ₄	LD light absorption	>90%
Size	45×45×45 mm³	LD energy resolution	<100 eV RMS
Number of crystals	1596	LD pileup resolution	<0.17 ms
Number of light detectors	1710	LD risetime*resolution	<1 msec*80 eV-FWHM
Detector mass	450 kg	Muon detector efficiency	>90%
Enrichment	95%	Crystal radiopurity	CUPID-Mo
¹⁰⁰ Mo mass	240 kg	Surface radiopurity	CUORE
Energy resolution	5 keV	Cu, PTFE radiopurity	CUORE
Light yield (β)	0.3 keV/MeV	DAQ bandwidth, storage	~10×CUORE
Background index	10-4 counts/(kg*keV*year)	Calibration system	External (CUORE)
α discrimination	99.9%	Cryogenics	CUORE

10 ⁴ 10 ² 10					And a start and a start a star	with with	סר ן ר _{ליתי}
20	000	2200	2400	2600	2800	3000 3	200
				_			

Project Breakdown Structure

hierarchical oganization of project deliverables, it is organized in 4 systems each corresponding to a WBS system (two ways of looking to the organization: WBS-how PBS-what. PBS is a collection of data-sheet.

Project Breakdown Structure

next slides discuss PBS considering

- validation of the adopted technological solutions
- priorities
- readiness & critical issue

Readiness Evaluation Table							
Technology /Design	Design & Prototyping	Optimization	Engineering & Executive Drawings				
Large Scale Production	To be organized	Plan ready	Ready to start				
Radioactivity	Material assay to be done	Selection on-going	Requirements fulfilled				

• risks

Risk	Severity	Probability	Mitigation
description risk #1	high	low	
description risk #2	medium	low	

validation of the adopted technological solutions and critical issues

- CUPID-0 and CUPID-Mo have extensively proved scintillation bolometer technology & a particle rejection CUPID-Mo proved LMO performances and radiopurity
- Hall-C measurements proved CUPID-like LMO-crystal performances

• priorities

- have purchased crystals grown with the two types and will soon measure them
- 2nd priority is optimization of pile-rejection (multi front approach, involves more WS)

• readiness & risk backup slides

K.Heeger and M. Pavan

1st priority is choice of isotope purity (critical path) two purity levels (two prices) Italy and France

validation of the adopted technological solutions & critical issues

- a CUPID-like tower operated by the end of the year (equivalent to CUORE-0)
- assembly line is designed on the basis of the CUORE one (988 detectors):
 - no crystals was damaged during assembly
 - 4 channels over 988 are disconnected (0.4% channel failure)

• priorities

freezing the mechanical design of the detector array (critical path)

• readiness & risk backup slides

K.Heeger and M. Pavan

innovative mechanical design, it is based on the lessons learned in CUORE, small prototype tested,

validation of the adopted technological solutions, risks & critical issues

- CUORE cryostat is working with a 90% cryogenic livetime at 10 mK
- **additional heat load** (3 times more wires) fully sustainable by the meas. cooling power of 4 μW @ 10 mK
- Int of space to improvement in vibrational noise

priorities

• readiness & risk backup slides

K.Heeger and M. Pavan

validation of the adopted technological solutions

- priorities

K.Heeger and M. Pavan

the read-out chain is an optimized version of the CUORE one already tested and matching CUPID requirements (main difference is in the integration of the digitized on the Bessel filter board and a design of the preamplifier that allows it to match requirements of both LMO and LD sensors.)

Schedule

K.Heeger and M. Pavan

CUPID

Budget

due to different accounting rules in each country we compare the Material & Service budget

- no personnel
- no contingency

(e.g. clean room for exclusive CUPID use ...)

few changes with respect to .

- Italy finalization of the build
- France scope expanded 1.2 M\$ commitment (ext
- US budget & scope unch

unaccounted: LNGS

infrastructure (safety, power supply, water)

Julv:							
			Country	M&S base	M&S contingency	In-kind	Total equipment
udaet				k\$	k\$	k\$	k\$
/:+~~	- 		Italy	22,781	5,867	7,479	36,126
(iter	ns previously in ita	nan scope)	, USA	18,257	4,740	494	23,491
ra ~(0.5 M\$ under discu	ssion)	France	442	0	590	1,032
			Total	41,480	10,607	8,563	60,650
lang	eu						
	Country	direct k\$	indirect k\$	anticipate d	M&S bas	e k\$	+ in-kind
	Italy (INFN)	22.2	1.3	0.4	23.9		7.5
	USA (DOE)	16.4	1.9		18.3		0.5
Fra	nce (CEA+IN2P3)	0.8		0.4	1.2		0.6
	Total				43.5		8.5

indirect costs, depending on the country, account for overhead, escalation, specific services of the Host lab

M&S Base k\$

K.Heeger and M. Pavan

Summary

- CUPID will explore inverted ordering ($T_{1/2} > 10^{27}$ years at 3σ , m_{BB} ~ 12-20 meV) Builds on an existing and well-functioning international collaboration and \bullet
- partnership between Italy and US
- Collaboration has operational experience at LNGS for ton-scale, bolometric \bullet experiment and utilizes existing infrastructure (CUORE cryostat, experimental site).
- CUPID is timely, highly leveraged, and cost-effective; an exceptional opportunity. \bullet
- Crystallization and enrichment at large scale are possible lacksquare
- **Limited technology verification remaining** for CUPID baseline
- **Data-driven background mode**l reaches baseline goal of b~10⁻⁴counts/(keV kg y) \bullet

CUPID is ready to proceed **Complements international suite of ton-scale experiments in a world-wide program**

