

Giorgio Gratta

Physics Dept, Stanford University

Milestones in the EXO program Since 2001

- 2001:	"EXO" started as an R&D effort towards a 136 Xe $\beta\beta$ decay experiment.
- 2002:	The improved energy resolution in LXe using the correlation between scintillation and ionization is discovered.
- Circa 2005:	Settled on a LXe TPC design for a "prototype" 200 kg detector.
- 2007-2010:	The EXO-200 detector is designed and built (circa 20M\$), with major contributions from Canada, Russia and Switzerland.
- 2012-2016:	After EXO-200 started taking data, showing excellent performance, the idea of a 5000 kg was further developed.
- 2014:	The "nEXO collaboration" was formed.
- 2014-2016:	Five US Nat'l Labs join the collaboration.
- May 2018:	nEXO pre-CDR posted on the arXiv
- Nov 2018:	CD-0 for tonne-scale ββ decay
- Dec 2018:	End of EXO-200 running
- 2019-now:	nEXO project developed; substantial nEXO engineering at SNOLAB
- Feb 2020:	nEXO MAC review

- Feb 2021: nEXO budget review

- Jul 2021: LLNL Director's review and DoE Portfolio review

EXO-200

nEXO follows a safe and scalable technique, pioneered by EXO-200

North America - Europe Summit, LNGS, Sept 2021

nEXO -- G.Gratta

The EXO-200 LXe TPC pioneered the use of topology, position, energy, and scintillation/ionization to independently <u>measure</u> signal and background(s) for the expected MeV-scale energy deposits.
 → Substantially more powerful than a simple energy measurement.

The same principle is used in nEXO

North America - Europe Summit, LNGS, Sept 2021

nEXO -- G.Gratta

The 2vββ decay in ¹³⁶Xe was discovered in the first week of EXO-200 data

For a while, this was the most accurately measured 2v decay.

EXO-200 results for 0vββ

- First 100 kg-class experiment to take data.
- Excellent background, very well predicted by the massive material characterization program (and the simulation).
 <u>This is essential for nEXO design.</u>
- Sensitivity increased linearly with exposure.
- More papers on non-ββ decay physics.

2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: Phys. Rev. Lett. 123 (2019) 161802

> Final result Phase I+II: 234.1 kg yr of ¹³⁶Xe exposure Limit: $T_{1/2}^{0\nu\beta\beta} > 3.5x10^{25}$ yr (90% CL) $\langle m_{\beta\beta} \rangle <$ (93 -286) meV Sensitivity: 5.0x10²⁵ yr

Radioactivity in EXO-200 was successfully predicted <u>before</u> turning on the detector

→ Massive effort on material radioactive qualification, using:

- NAA
- Low background γ-spectroscopy
- α-counting
- Radon counting
- High performance GD-MS and ICP-MS

The materials database includes >300 entries

D.S. Leonard et al., Nucl. Ins. Meth. A 591 (2008) 490 D.S. Leonard et al., Nucl. Inst. Meth. A 871 (2017) 169 M. Auger et al., J. Inst. 7 (2012) P05010.

The background can then be directly measured in the data:

J.B. Albert et al. Phys. Rev. C 92 (2015) 015503.

Cosmogenic backgrounds:

J.B. Albert et al., JCAP 04 (2016) 029.

Events in ±2σ around Q	Radioactive bkgd prediction using certification data and G4 Monte Carlo	¹³⁷ Xe bkgd	Background from 0v analysis fit
90%CL Upper	56	10	63.2 ± 4.7
90%CL Lower	8.2	10	(65 events observed)

nEXO: In the land of large, scalable double-beta decay experiments

nEXO sensitivity reaches 10²⁸ yr in 6.5 yr data taking

nEXO -- G.Gratta

Sensitivity and Discovery Potential

nEXO is a discovery experiment that will search for lepton number violation over a large, unexplored parameter space

Mean number of $0\nu\beta\beta$ events 10^{3} 10^{2} 10^{1} 10²⁷ - 10²⁸ yr T_{1/2} sensitivity • Can provide compelling evidence of discovery ٠ Discovery Significance $\begin{bmatrix} \sigma \end{bmatrix}$ without other experiments **Probes effective Majorana neutrino masses,** • KamLAND-Zen (90% $\langle m_{metameta}
angle$, down to 15 meV EXO-200 (90% C.L.) 3σ $= 0.38 \times 10^{28} \text{ yr}$ 0.74Limit Discovery **Reference:** 0 Sensitivity 10^{25} 10^{26} 10^{27} 10^{28} 0.35x10²⁶ yr (90% CL) **EXO-200** PRL 123 (2019) 161802 Half-life of $0\nu\beta\beta$ in ¹³⁶Xe [yr] KamLAND-Zen 1.07x10²⁶ yr (90% CL) PRL 117 (2016) 082503 $0.38 \times 10^{28} (5\sigma)$ nEXO arXiv:2106.16243

 $0.74 \times 10^{28} (3\sigma)$

The new physics reach can be parameterized in the effective Majorana mass. This is also useful to compare different experiments.

- ¹³⁶Xe benefits from larger $G^{0\nu}$ than lighter isotopes $(G^{0\nu}$ is known precisely)
- Significant theoretical uncertainty in NMEs
 - Adopt agnostic approach considering all published
 NMEs not directly superseded by later publications
 - Conclusions not qualitatively changed if *all* published NMEs are considered

References for the NMEs used

1	Method	Year	Citation
	IBM	2015	PRC 91 034304 (2015)
	NSM	2008	PRL 100, 052503 (2008)
•	IBM	2020	PRD 102, 095016 (2020)
	QRPA	2014	PRC 89, 064308 (2014)
	NSM	2016	PRC 93, 024308 (2016)
	QRPA	2015	PRC 91, 024613 (2015)
	QRPA	2018	PRC 98, 024608 (2018)
	NSM	2018	JPS Conf. Proc. 23, 012036 (2018)
	QRPA	2013	J. High Energ. Phys. 2013, 25 (2013)
	QRPA	2013	PRC 87, 064302 (2013)
	QRPA	2013	PRC 87, 045501 (2013)
	QRPA	2018	PRC 97, 034315 (2018)
	QRPA	2010	Nucl.Phys.A 847 (2010) 207
	EDF	2013	PRL 111, 142501 (2013)
	EDF	2015	PRC 91, 024316 (2015)
	QRPA	2018	PRC 97, 045503 (2018)
	EDF	2017	PRC 96, 054310 (2017)
	QRPA	2015	PRC 91, 024613 (2015)
	EDF	2010	Prog.Part.Nucl.Phys. 66 (2011) 436

Majorana Mass Reach

 Allowed parameter space and nEXO exclusion sensitivity (90% CL):
 nEXO 3σ discovery sensitivity for the median NME model considered is 11.1

 Image: Allowed parameter space and nEXO exclusion sensitivity (90% CL):
 nEXO 3σ discovery sensitivity for the median NME model considered is 11.1

 Image: Allowed parameter space and nEXO exclusion sensitivity (90% CL):
 nEXO 3σ discovery sensitivity for the median NME model considered is 11.1

Conclusions:

- nEXO extends the T_{1/2} reach into new physics by ~2 orders of magnitude, with substantial chance of making a discovery.
- nEXO has a slightly better physics reach with respect to other experiments (but the NME uncertainty is large).
- The most important conclusion is that nEXO's sensitivity estimates are robust and built from a bottom-up approach based on measured data (coming up in a minute).

A healthy neutrinoless double-beta decay program requires several isotopes.

This is because:

Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities

• Different isotopes correspond to vastly different experimental techniques

- 2 neutrino background is different for various isotopes
- Disentangling nucl. Matrix element effects from the mechanism producing the decay requires the analysis of more than one isotope
 → see Francesco Vissani

Monolithic/Homogeneous is key

LXe mass (kg)	Diameter or length (cm)
5000	130
150	40
5	13

2.5 MeV γ attenuation length 8.7cm = ---

Important: The estimate of the nEXO sensitivity relies only on materials <u>already</u> tested for radioactivity (except for the intrinsic contamination of the LXe which can be/is repurified during running)

North America - Europe Summit, LNGS, Sept 2021

nEXO -- G.Gratta

Using event multiplicity to recognize backgrounds

nEXO is the best option for a very large detector

Multi-parameter analysis: much more information than just energy

Multi-parameter analysis also makes the measurement robust with currently unknown backgrounds. Since there is no internal passive materials, any unknown gamma lines give a very clear reading in the multi-site channel.

- 2. The energy resolution, still important, is good enough, once the scintillation and ionization are used in tandem. nEXO will have a resolution <1% at the Q-value.
- 3. The ratio of scintillation to ionization allows to quantify background due to radon contained in the LXe by tagging alphas.

nEXO is the best option for a very large detector: Using xenon results in reliability and cost effectiveness

- 4. Recirculating Xenon reduces risk, as the purification system can be upgraded if unexpected backgrounds are discovered and/or if new technology becomes available. Note that xenon has no long-lived, unstable isotopes.
- 5. Xenon enrichment is well understood and cost effective.
 - EXO-200 used 200 kg of Xe enriched to 80% in 136, at the time a pioneering production.
 - KamLAND-ZEN more recently purchased ~800 kg of xenon enriched to 90% in 136.
 - The nEXO need is only 5x of what is already available.
 - nEXO has identified at least two western suppliers each with enough enrichment capacity for the entire production at competitive price. We also have two backup (western) options. All options have been extensively investigated and we have carried out site visits for three of them.

xenon

THE NEW YORKER

North America - Europe Summit, LNGS, Sept 2021

nEXO -- G.Gratta

nEXO is <u>unique</u> among proposed experiments because...

6. nEXO can make a discovery by itself, by repeating the experiment with non-enriched Xenon to confirm that a signal goes away (see "Standard of proof" in the 2014 NSAC ββ NSAC subcommittee report)

7. If nEXO discovers 0vββ decay:

The enriched xenon is NOT "frozen" in a particular detector. Should 0vββ decay be discovered by nEXO, the xenon could be re-used in a different experimental configuration to investigate the underlying physics.

This is particularly important at the tonne scale, given the cost of the material.

8. If nEXO does not discover $0\nu\beta\beta$ decay:

The advantages of the homogeneous detector keep improving with size. Should 0vββ decay not be discovered by nEXO, larger detectors using the same technology are plausible. There is enrichment capacity for this, although the feed stock will need to be directly extracted from air; again, this is plausible. The technology needs to be developed with an eye to the future. → see Andrea Giuliani

The nEXO detector is an evolution from EXO-200, with specific R&D **nEX** done over the last 10 years

	EXO-200:	nEXO:	Improvements:
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
High voltage	Max voltage: 25 kV (end-of-run)	<i>Operating</i> <i>voltage: 50 kV</i>	Full scale parts tested in LXe prior to installation to minimize risk
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)
Electronics	Conventional room temp.	In LXe ASIC- based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons

The design of nEXO is mature:

Basic elements contained in the pre-CDR:

"nEXO pCDR" arXiv:1805.11142 (May 2018)

Initial sensitivity estimate:

"Sensitivity and Discovery Potential of nEXO to 0vββ decay" Phys. Rev. C 97 (2018) 065503.

Updated sensitivity estimate:

"nEXO: Neutrinoless double beta decay search beyond 10²⁸ year half-life sensitivity", arXiv:2106.16243 (Jul 2021)

Several instrumentation papers published in the last few years.

nEXO Pre-Conceptual Design Report

arXiv:1805.11142 [physics.ins-det] 28 May 2018

Abstract

The projected performance and detector configuration of nEXO are described in this pre-Conceptual Design Report (pCDR). nEXO is a tonne-scale neutrinoless double beta $(0\nu\beta\beta)$ decay search in ¹³⁶Xe, based on the ultra-low background liquid xenon technology validated by EXO-200. With \simeq 5000 kg of xenon enriched to 90% in the isotope 136, nEXO has a projected half-life sensitivity of approximately 10^{28} years. This represents an improvement in sensitivity of about two orders of magnitude with respect to current results. Based on the experience gained from EXO-200 and the effectiveness of xenon purification techniques, we expect the background to be dominated by external sources of radiation. The sensitivity increase is, therefore, entirely derived from the increase of active mass in a monolithic and homogeneous detector, along with some technical advances perfected in the course of a dedicated R&D program. Hence the risk which is inherent to the construction of a large, ultra-low background detector is reduced, as the intrinsic radioactive contamination requirements are generally not beyond those demonstrated with the present generation $0\nu\beta\beta$ decay experiments. Indeed, most of the required materials have been already assayed or reasonable estimates of their properties are at hand. The details described herein represent the base design of the detector configuration as of early 2018. Where potential design improvements are possible, alternatives are discussed.

This design for nEXO presents a compelling path towards a next generation search for $0\nu\beta\beta$, with a substantial possibility to discover physics beyond the Standard Model.

May 28, 2018

nEXO is well optimized

No detector component dominates the background.

Fully developed, DoE-style, project structure

The WBS is Detailed, Full Dictionary

L2		L3	L4	Scope	CAM
		1.01.01		Management	Riot
1.01	Management	1.01.02		Project control	Riot
		1.01.03		QA and Safety	Riot
	System	1.02.01		Systems Engineering	Hunt
	engineering		1.02.02.01	Integration and Commissioning Management	Nordby
1 0 2	Integration		1.02.02.02	TPC Integration	Nordby
1.02	integration	1.02.02	1.02.02.03	Cryostat Integration	Nordby
and commissioning	and		1.02.02.04	Facilities Operations and Management	Nordby
		1.02.02.05	nEXO Commissioning	Nordby	
		1.03.01		TPC Management	Gorham
	Time	1.03.02		TPC Vessel	Gorham
1 02	Projection	1.03.03		High Voltage and Field Cage	Gorham
1.05	Chamber	1.03.04		Charge Detector and Anode	Gorham
	Champer	1.03.05		TPC Cables and Interconnects	Gorham
		1.03.06		Calibration Systems	Gorham
		1.04.01		Photon Detector Management	Worcester
	Photon	1.04.02		SiPM Procurement	Worcester
1.04	Detector	1.04.03		SiPM Test Facility	Worcester
	Detector	1.04.04		SiPM Tile Modules	Worcester
		1.04.05		Stave Assemblies	Worcester
		1.05.01		TPC Support Systems Management	House
1 05	TPC Support	1.05.02		TPC Support Systems Cryostat	House
1.05	Systems	1.05.03		Xenon Handling and Purification	House
		1.05.04		HFE Process and Refrigeration	House
			1.06.01.01	Charge Readout Electronics Management	Dragone
		1.06.01	1.06.01.02	Charge Readout ASIC	Dragone
		1.00.01	1.06.01.03	Charge Readout Daughter Board	Dragone
1.06	Electronics		1.06.01.04	Charge System Support Boards	Dragone
1.00	Lieutomes		1.06.02.01	Photon Readout Electronics Management	DeMino
		1.06.02	1.06.02.02	Photon Readout ASIC	DeMino
		1.00.02	1.06.02.03	Photon System Transition Board	DeMino
			1.06.02.04	Photon System Controller/Receiver Board	DeMino

L2		L3	L4	Scope	CAM
		1.07.01		Radioactive Background Control Management	Acting - Piepke
	Radioactive	1.07.02		Radioactivity in Materials	Acting - Piepke
1.07	Rackground	1.07.03		Radon Outgassing	Acting - Piepke
	Cantral	1.07.04		Exposure Based backgrounds	Acting - Piepke
	Control	1.07.05		Surface Cleaning and Testing	Acting - Piepke
		1.07.06		Materials Synthesis and Industry Survey	Acting - Piepke
		1.08.01		CCS Management	Acting - Sangiorgio
		1.08.02		Slow Control	Acting - Sangiorgio
	Computing	1.08.03		DAQ	Acting - Sangiorgio
1 00	Computing,	1.08.04		Analysis Software	Acting - Sangiorgio
1.08	Software	1.08.05		Simulations Software	Acting - Sangiorgio
		1.08.06		Infrastructure Software	Acting - Sangiorgio
		1.08.07		Data and Computing Facilities	Acting - Sangiorgio
		1.08.08		Sensitivity and Science Readiness	Acting - Sangiorgio
		1.09.01		Management for Xenon sub-system	Acting - Riot
1 00	Vanan	1.09.02		Enriched Xenon procurement	Acting - Riot
1.09	Xenon	1.09.03		Xenon Assaying Systems	Acting - Riot
		1.09.04		Xenon Transfer Vessels	Acting - Riot
		1.10.01		Outer Detector Management	Hawkins
		1.10.02		Water Tank	Hawkins
1.10	Outer Detector	1.10.03		Muon Veto	Hawkins
		1.10.04		Water Circulation System	Hawkins
		1.10.05		Outer Detector Test Facility	Hawkins
		1.11.01		SNOLAB Facility Management	Hawkins
1 1 1	Facilities	1.11.02		SNOLAB Cryopit Infrastructure	Hawkins
1.11	raciiities	1.11.03		SNOLAB Clean Rooms	Hawkins
		1.11.04		SNOLAB LN2 Plant	Hawkins

Cost Estimate

- Follows US accounting practices
 - In particular, all project manpower is accounted for explicitly, typically at Nat'l lab rates
 - Contingency also properly accounted for
- Bottom up: each subsystem generated a list of activities
 - Description
 - Basis of estimate
 - Cost/labor
 - Risk Factors
- ~13,000 activities in the current plan
- Internal and external review
 - · Each item independently reviewed
 - Top level comparison with similar projects

nEX®

Cost estimate example: Charge Readout ASIC prototyping excerpt

Activity ID	Detailed activities	Resource Id	Activity Type	Duration(d)	Labor (hrs)	Dollars	Global Milestone Level	nEXO Milestone Description	nEXO Risk Mitigation Item
CRE04130	Prototype 2 Charge Readout CRE ASIC test board multichannel readout firmware development	SL/ Reso this c	urce code (in ^{lete} case electrical	30	80		lf activi	ties are a risk	CRE-R2-1
CRE04140	Prototype 2 Charge Readout CRE ASIC test board multichannel readout software development from exisiting test suite	SL/ engi	neer level 3) ete	30	60	r	miti efere <u>n</u>	gation, risk ce is captured	CRE-R2-1
CRE04230	Prototype 2 Charge Readout CRE ASIC digital backend functionality test	SLAC-EE3	Percent Complete	10	40 Calonda	0			CRE-R2-1
CRE04240	Prototype 2 Charge Readout CRE ASIC preamp functionality test	SLAC-EE3	Percent Complete						CRE-R2-1
CRE04250	Prototype 2 Charge Readout CRE ASIC ADC functionality test	SLAC-EE3	Percent Complete	dur	ation in	days			CRE-R2-2
CRE04260	Prototype 2 Charge Readout CRE ASIC LDO functionality test	SLAC-EE3	Percent Complete	10	40	0			CRE-R2-3
CRE04270	Prototype 2 Charge Readout CRE ASIC digital performance test	SLAC-EE3	Percent Complete	20	60	Ć	Cont		CRE-R2-1
CRE04280	Prototype 2 Charge Readout CRE ASIC preamp performance test	SLAC-EE4	Percent Complete	20	160		Cost h	lere for	CRE-R2-2
CRE04290	Prototype 2 Charge Readout CRE ASIC ADC performance test	SLAC-EE5	Percent Complete	20	160			45	CRE-R2-3
CRE04300	Prototype 2 Charge Readout CRE ASIC LDO performance test	SLAC-EE3	Percent Complete	20	60	0			CRE-R2-1
CRE04310	COMP: Prototype 2 Charge Readout CRE ASIC Complete		0-100%	0	0	0	L4	Prototype 2 CRE ASIC tests complete	CRE-R2-2
CRE04320	Prepare Handled Prototype 2 ASIC for Assaying	SLAC-EE3	Percent Complete	20	10	0			
CRE04330	AVAIL: Handled Prototype 2 ASIC for Assaying		0-100%	0	L	abor l	nours	Handled ASIC samples leaned, bagged and ready for shipping	
CRE04340	Generate Prototype 2 test report	SLAC-EE4	Percent Complete	30	40	0		2	6

nEX®

Cost estimate example: Charge Readout ASIC prototyping excerpt

Activity ID	Activity Name	EDIA Code	Project Phase	nEXO Estimator Name	nEXO Estimate Date	nEXO Estimate Summary
CRE04130	Prototype 2 Charge Readout CRE ASIC test board multichannel readout firmware development	EDIA Code for prelimi future reporting s-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE3 - 50 brs for firmware dev, 20 hrs for debugging and Basis of mentation
CRE04140	Prototype 2 Charge Readout CRE ASIC test board multichannel readout software development from existing test suite	Engine - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE3 - estimate , 10 hrs for debugging and estimate , 10 hrs for amentation
CRE04230	Prototype 2 Charge Readout CRE ASIC digital backend functionality test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Pre Pr	oject Pha	se ₀₂₁	SLAC-EE3 - 35 hr to sing communication to the chip, 5 hrs documentation
CRE04240	Prototype 2 Charge Readout CRE ASIC preamp functionality test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE3 - 10 hrs setup, 70 hrs to check functionalities of all 64 preamp on the chip, 10 hrs documentation
CRE04250	Prototype 2 Charge Readout CRE ASIC ADC functionality test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Estim	ator na	C-EE3 - 10 hrs setup, 70 hrs to check all 64 ADC on the chip, 10 hrs documentation
CRE04260	Prototype 2 Charge Readout CRE ASIC LDO functionality test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	an	d date	E3 - 35 hr testing on chip regulators, 5 hrs documentation
CRE04270	Prototype 2 Charge Readout CRE ASIC digital performance test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE3 - 50 hr measuring reliability of the backend communication, 10 hrs documentation
CRE04280	Prototype 2 Charge Readout CRE ASIC preamp performance test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE4 - 10 hrs setup, 2 hrs ea to measure noise of the preamp with difference loads, 64 channels, 12 hrs of debugging, 10 hrs documentation
CRE04290	Prototype 2 Charge Readout CRE ASIC ADC performance test	Engineer - Design: A/E, tech specs.; conceptual, preliminary, and final design; as-built drawings, etc	Preliminary Design	Angelo Dragone	3/9/2021	SLAC-EE5 - 10 hrs setup, 2 hrs ea to measure INL, DNL, and other performance parameter of ADCs, 64 channels, 12 hrs of debugging, 10 hrs documentation

Cost estimate example: Charge Readout ASIC prototyping excerpt

nEXO cost estimate summary

Cost development and assumptions

- The cost estimate was developed bottom-up from the 13 separate major sub-systems teams.
- The cost is a roll-up of 13,288 work packages (activities), each defined with the basis for the estimate (justification), number of hours/cost of procurement, resource type, estimate confidence factors covering 24 institutions and over 350 resource types. All activities are in P6.
- The base cost is in FY22 rates as collected from each institution. Escalation was applied based on the preliminary schedule and uses the LLNL standard yearly escalation rate of 4.2% for labor and 2% for Procurement. The project start date was set to 10/01/2021 (FY22) and escalation was applied starting in FY23. The project duration was determined to be 6.5 years.
- The cost assumes that TEC funding has preferential rates when available at the institution for MIE project. This special rate is applied to LLNL and SLAC. BNL and PNNL may provide preferential rates before CD-1.
- All work was included whether it is contributed or not to ensure the full scope is understood. Canadian contribution cost are in CAD \$. However, only project cost were selected to establish the "DOE Project" costs.
- Procurement cycles have been detailed and incorporated in the estimate, based on standard procurement cycles at US national laboratories.

nEXO – DOE project cost

Burden (\$K)	Escalation (\$K)	Total (\$K)	
\$8,894	\$2,595	\$23,747	
\$6,321	\$1,801	\$16,634	
\$2,432	\$1,680	\$16,061	
\$6,320	\$1,095	\$19,477	Management 9% System
\$6,267	\$1,396	\$22,082	Engineering 7%
\$5,853	\$1,234	\$26,369	Xenon Integration & Commissionin
\$1,585	\$661	\$10,602	32% 6%
\$4,730	\$549	\$10,922	Time Project Chamber (TF
\$3,396	\$912	\$13,142	Computing,
\$4,118	\$888	\$11,950	Software 9%
\$6,451	\$624	\$78,679	Radioactive TPC Support
ontributed	Contributed	Contributed	Background Photon Readout / Charge Readout System Control Electronics 11%
ontributod	Contributed	Contributed	J 3% 470 4%

	WBS	FY22 Direct (\$K)	Burden (\$K)	Escalation (\$K)	Total (\$K)
1.01	Management	\$12,258	\$8,894	\$2,595	\$23,747
1.02.01	Systems Engineering	\$8,513	\$6,321	\$1,801	\$16,634
1.02.02	Integration & Commissioning	\$11,948	\$2,432	\$1,680	\$16,061
1.03	Time Projection Chamber (TPC)	\$12,062	\$6,320	\$1,095	\$19,477
1.04	Photon Detector	\$14,419	\$6,267	\$1,396	\$22,082
1.05	TPC Support System	\$19,282	\$5,853	\$1,234	\$26,369
1.06.01	Charge Readout Electronics	\$8,356	\$1,585	\$661	\$10,602
1.06.02	Photon Readout Electronics	\$5,644	\$4,730	\$549	\$10,922
1.07	Radioactive Background Control	\$8,834	\$3,396	\$912	\$13,142
1.08	Computing, Controls and Software	\$6,944	\$4,118	\$888	\$11,950
1.09	Xenon	\$71,605	\$6,451	\$624	\$78,679
1.10	Outer Detector	Contributed	Contributed	Contributed	Contributed
1.11	Facilities	Contributed	Contributed	Contributed	Contributed
Sub-T	otal	\$179,863	\$56,367	\$13,435	\$249,665
Contir	ngency (40%)				\$99,866
Total F	Project Cost				\$349,532

North America - Europe Summit, LNGS, Sept 2021

nEXO – DOE project cost by labor/M&S/travel nEX®

	WBS	Labor (\$K)	M&S (\$K)	Travel (\$K)	Total (\$K)
1.01	Management	\$21,884	\$396	\$1,468	\$23,747
1.02.01	Systems Engineering	\$15,716	\$192	\$727	\$16,634
1.02.02	Integration & Commissioning	\$14,511	\$1,007	\$544	\$16,061
1.03	Time Projection Chamber (TPC)	\$16,294	\$2,892	\$291	\$19,477
1.04	Photon Detector	\$10,286	\$11,474	\$321	\$22,082
1.05	TPC Support System	\$12,405	\$13,680	\$284	\$26,369
1.06.01	Charge Readout Electronics	\$8,979	\$1,541	\$82	\$10,602
1.06.02	Photon Readout Electronics	\$8,791	\$1,902	\$230	\$10,922
1.07	Radioactive Background Control	\$8,486	\$4,095	\$560	\$13,142
1.08	Computing, Controls and Software	\$10,866	\$889	\$195	\$11,950
1.09	Xenon	\$9,823	\$68,537	\$319	\$78,679
1.10	Outer Detector	Contributed	Contributed	Contributed	Contributed
1.11	Facilities	Contributed	Contributed	Contributed	Contributed
	Sub-Total	\$138,041	\$106,606	\$5,019	\$249,665
	Contingency (40%)				\$99,866
	Total Project Cost				\$349,532

Schedule

University of Munster (Germany) Skyline (USA) Subatech (France) U of Western Cape (South Africa)

nEX®

all joined the collaboration in the last year

nEXO is a world-wide effort, including, for the time being, 9 Countries, 33 institutions, 186 collaborators More colleagues with interests in the science, the detector technology (or both) are encouraged to discuss possible collaboration.

nEXO -- G.Gratta

(Part of) The nEXO Collaboration

