Summary of the SABRE-PoP results and preliminary data analysis with the new PoP-dry setup

A. Mariani, G. Di Carlo

+ . + . . × . . × .

+ × •

SABRE Italia Meeting 24-25 May, 2021 - Online

+ × × × · + + • + * + + • • × *

SABRE-PoP

+ + × ×

× • • • • • • •

× × ×

* + + + × •

× _____

• • •

+ +

× + + · · · · · · · · · ·

× × +

* * * * * + *

× + ×

* * * * * * * *

* * * * * * * * *

+ ×

The SABRE Proof-of-Principle (PoP)

Goal: assess the radiopurity of SABRE crystals and test the active veto performance

Measurements

- Potassium direct counting;
- Low energy analysis of Nal-33 data;
- Background model of Nal-33.

⁴⁰K analysis - energy crystal vs. energy veto

Exposure: ~60 kg \cdot days

Exposure: ~90 kg · days

⁴⁰K analysis Nal-31

Crystal energy spectrum (efficiency-corrected)

Veto energy spectra

⁴⁰K analysis Nal-33

Crystal energy spectrum (efficiency-corrected)

Veto energy spectra

⁴⁰K analysis results

	Nal-31	Nal-33
N _{S+B}	48 ± 7	27 ± 5
N _{B1}	15 ± 4	21 ± 5
N _{B2}	9 ± 3	15 ± 4
N _{40K}	37 ± 7	9 ± 6
⁴⁰ K activity [mBq/kg]	0.49 ± 0.10	0.07 ± 0.05
^{nat} K contamination [ppb]	15.7 ± 3.2	2.2 ± 1.5
^{nat} K contamination by ICP-MS [ppb]	17.7 ± 1.1	4.6 ± 0.2

Upper limits for Nal-33 (90% C.L.): • ⁴⁰K activity: < 0.15 mBq/kg;

• ^{nat}K contamination: < 4.7 ppb.

• N_{S+B} : number of events in signal band;

• $N_{B1}(N_{B2})$: number of events in sideband 1 (sideband 2);

• $\sigma_{Ni} = \sqrt{N_i}$, with i = S+B, B₁, B_{2.}

PoP setup sensitive to a ppb-level ^{nat}K contamination in the crystal and results from direct counting in agreement with ICP-MS measurements

Nal-33 low energy spectrum - [1-100] keV

Anti-coincidence spectrum (efficiency-corrected)

 Events which deposit energy in the crystal, but not in the veto detector (LS threshold = 50 keV).

Veto rejection power

Nal-33 low energy spectrum - [1-20] keV

Anti-coincidence spectrum (efficiency-corrected)

Comparison with other Nal(TI) experiments

The NaI-33 is the <u>best crystal</u> ever produced after DAMA/LIBRA (background level comparable with DAMA/LIBRA-phase1)

Nal-33 background model

Activities (or rate) of different background components determined from the spectral fit

Source	Activity (or rate)		
		—	
(⁴⁰ K	(0.14 ± 0.01) mBq/kg		
²²⁶ Ra	(5.9 ± 0.6) µBq/kg	Crystal	
²³² Th	(1.6 ± 0.3) µBq/kg		
²¹⁰ Pb (bulk)	(0.41 ± 0.02) mBq/kg		
³ H	(12 ± 7) µBq/kg		
¹²⁹	(1.34 ± 0.04) mBq/kg	Crystal	
^{121m} Te	≤ 84 µBq/kg	cosmogenics	
^{127m} Te	(16 ± 6) µBq/kg		
²¹⁰ Pb (teflon reflector)	(1.1 ± 0.2) mBq	Surface contamination	
Flat component	(0.10 ± 0.05) cpd/kg/keV	Internal + External contamination	

Background model - [1-20] keV

The dominant background contributions are from internal ²¹⁰Pb and ²¹⁰Pb in the teflon reflector wrapped around the crystal

A careful screening and selection of the reflector will be fundamental in view of the SABRE full-scale experiment.

³H activity in Nal-33 seems to be about one order of magnitude lower than measured in ANAIS and COSINE crystals

Coarasa, I. et al., *Eur. Phys. J. C*, 79:233, 2019. Adhikari P. et al., *Eur. Phys. J. C* 78:490, 2018.

Summary and conclusions SABRE-PoP

	Nal-31	Nal-33	DAMA/LIBRA	ANAIS	COSINE
			crystals	crystals	crystals
LY [phe/keV]	9.1 ± 0.1	12.1 ± 0.2	6-10	15	15
FWHM/E @59.5 keV	14.1%	13.5%	15.8%	11.2%	11.8%
⁴⁰ K activity [mBq/kg] (direct counting)	0.49 ± 0.10	< 0.15	< 0.62	0.70-1.33	0.58-2.5
²³⁸ U content [ppt] (spectral fit, secular eq. assumed)	-	< 0.5	0.7-10	0.2-0.8	< 0.02-0.12
²³² Th content [ppt] (spectral fit)	-	< 0.5	0.5-7.5	0.1-1	0.3-2.4
²¹⁰ Pb activity [mBq/kg] (spectral fit)	-	0.41 ± 0.02	0.005-0.03	0.7-3.15	-
³ H activity [mBq/kg] (spectral fit)	-	0.012 ± 0.007	< 0.09	0.09-0.20	0.05-0.12
Exposure	60 kg∙days	90 kg∙days	2.17 ton∙yr	313.95 kg∙yr	97.7 kg∙yr
Average count rate in [1-6] keV [cpd/kg/keV]	-	1.20 ± 0.05	< 1	3.605 ± 0.003	2.73 ± 0.14

The Nal-33 crystal has:

- the lowest potassium level ever achieved (measured thanks to the high sensitivity of the SABRE-PoP setup);
- U/Th content fully satisfying the SABRE target;
- average count rate in the [1-6] keV energy region comparable (for the first time) with that of DAMA/LIBRA-phase1, and mostly due to a ²¹⁰Pb surface contamination in the teflon reflector wrapped around the crystal.

* * + * * * * * * *

SABRE PoP-dry

× × ×

* * * * * * + * * * * * * * *

< * * * * * •

+ + + +

• + • +

* * * * + * + * *

Experimental setup

- Passive shielding made of low radioactivity copper (10 cm on all sides and top, 15 cm below) and some polyethylene slabs on sides, located inside the SABRE-PoP polyethylene hut;
- Both SABRE crystals placed inside the Cu shielding one over the other: Nal-31 (bottom) and Nal-33 (top);
- Inner volume of the detector modules flushed with high-purity N_2 gas.

Events selection

- Selection criteria tuned on data acquired with a ²²⁶Ra source
 - Coincidences between the two crystals were used (low statistics, but extremely pure data sample);
- Same cuts parameters and thresholds used for the SABRE-PoP data.

Mean Time vs. Energy - coincidences

Acceptance

Nal-33 low energy spectrum - [1-100] keV

PoP-dry vs. PoP

PoP-dry vs. PoP (efficiency-corrected)

Summary and conclusions SABRE PoP-dry

With the SABRE PoP-dry setup we can:

- increase statistics and improve the background model of the Nal-33 crystal;
- test the Nal-33 crystal after substitution of teflon reflector;
- test new crystals;
- long-term stability test of the DAQ.

Backup

× × ×

* * < * * * * * *

+ + . -

* *

× +

· + + · + ×

+ × .: × +

• , × × ×

× • • + × ×

* * * * * + *

• • • +

+ • • • * × • ×

* * .

* + * * + × × * * *

+ × ×

Nal-33 background model - [1-100] keV

