

SPMT commissioning with small showers data

Gioacchino Alex Anastasi, on behalf of the Torino group

SPMT on the field

Small showers data from stations with pre-production UUBs

The SPMT inter-calibration: where are we?

✦ SPMT simulation

SPMT on the field

Small showers acquisition, stream to CDAS and transmission to Lyon running smoothly since the end of November 2020.

★79 SPMTs in the field with the new UUBs

- 29 installed in December 2020 (pre-production array)
- 48 installed in March-April 2021 (pre-production array + EA)
- 2 used for tests : Trak (id. 0020) & Clais (id. 0022)

★ 03/04/2021 : firmware update (necessary for small showers acquisition)

SPMT cross-calibration data acquisition

Small showers selection by each station UUB				
	Variables	Size	Freq.	
EVENT	GPS time	32 bit x 2	~200/h	
info	AREA_PEAK_SATUR x 6 (LPMT1-2-3 - sPMT - SSD LG-HG)	32 bit x 6	(~300/h if a LPMT masked)	
MUON info	GPS sec	32 bit		
	LPMT VEM charge x 3	16 bit x 3	~ 1 / min	
	SSD MIP charge	16 bit		
DAQ info	GPS sec	32 bit		
	LPMTs masked status	16 bit		
	HG/LG ratio x 3	16 bit x 3	~ 1 / 5 min	
	LPMT threshold x 3	16 bit x 3		
	online VEM calibration x 3	16 bit x 3		

Stream data every hour to CDAS

At CDAS level :

small showers data-stream reading

storage into "monitoring-like" ROOT files

Transfer data to Lyon every day

Thanks to Ricardo for all the work on this item !

~ 7 kB / h (~12 kB / h if a LPMT is masked) from each station

Small showers selection and stream to CDAS activated on:

- Trak (2020/Oct/27)
- Clais (2020/Nov/02)
- all other UUB tanks (2020/Nov/05)

On 2020/Oct/27, modified version of CDAS started.

Stream to Lyon also activated !

Scatter plot - Trak (id. 20)

LPMT1 signal vs SPMT signal - tank 20

LPMT2 signal vs SPMT signal - tank 20

SPMT cross-calibration

Determination of the calibration factor $\boldsymbol{\beta}$

$$S_{LPMT}[VEM] = \beta \ Q_{SPMT}[FADC \ counts]$$

exploiting *small showers signals* (~200 events/h with the current selection).

★ Small showers are T1 events selected requiring a 2-fold coincidence among the LPMTs signals above a chosen threshold (changing with the individual LPMTs counting rates).

Spectra comparison method

- considered the most reliable in the superposition region (where <15% of LPMT signals are saturated).</p>
- effective for measurement of unsaturated signal up to (at least)
 ~20,000 VEM
- β should be updated every hour (using sliding intervals of 8 hours) to follow the temperature.

Checking the calibration result

Cumulative spectrum and signal differences with **2 weeks of data**, where each SPMT signals is calibrated using the β closer in time.

Very good agreement in the inter-calibration region.

Study of **accuracy** and **resolution** of the technique underway.

Dispersion in the calibrated signal differences anyway lower than 15% in the inter-calibration region.

entries

Average calibration factor

Inter-calibration factor β in blocks of 24h for 50 selected tanks.

Spread mainly due to the different SPMT HVs and the different correlation between HV and gain for each photomultiplier.

Area over Peak - SPMT

Average SPMT area-over-peak

Average SPMT area-over-peak for 50 selected tanks.

Spread mainly due to the different condition of each WCD.

Signal range extension

Predicted maximum SPMT signal without saturation

 $< S_{max} > = < AoP > \times peak_{saturation} \times \beta$

where $peak_{saturation} \sim 3900 FADC counts$ (β and average AoP from previous slides).

Only few tanks are below the target value at the moment.

SSD signals in small showers

SSD signal vs WCD signal - tank 20

Cumulative scatter plot with 1 month of small showers data.

Signals more spread than in standard events, but correlation clearly present.

SPMT offline cross-calibration

Simulation

Recovery of the FULL GEANT4 simulation

SPMT implemented in the GEANT4 station (AugerPrime WCD + SSD).

Position, geometry and detector properties checked and updated.

FULL simulation mode now working and tested

✓ Final validation with high energy events performed Eric Mayotte and Sonja Schröder.

log10(totalSignal)

1.5

GEANT4 station PMTs

NOT in scale tank (HDPE) 15 mm **SPMT** Liner reflective 12.7 mm (114 + 2.5 + 1 + 5.2) mm surface 11 mm (114 + 2.5 + 1) mm (114 + 2.5) mm 1.1 mm 114 mm 0.5 mm 104 mm 0.3 mm LPMT 84.5781 mm PMT active face interface (optical gel) - Wacker SilGel 612 -- pyrex -2.5 mm 1 mm dome (transparent window) 5.2 mm PMT face - lucite -- pyrex1 vacuum inside LPMTs water

Schema of the PMTs simulation as defined in *G4StationConstruction.cc* The LPMTs are formed by half-ellipsoids (one inside the other) while the SPMT is constituted by cylinders (G4Tubs in GEANT4).

In the FAST mode, such shapes are hard-coded (only the dimensions of each part can be changed).

Validation of the new FAST mode

✓ Validated using **integrated signals** from "small showers"

- ~30,000 unthinned CORSIKA protons showers, with energy [10¹³,10¹⁵] eV and zenith [0°,60°]
- core @ tank center using the CachedDirectInjector
- ✓ Validated comparing traces
 - ► single 1GeV muon, vertical and inclined (42°, 60°)
 - 250 muons, 1 GeV, vertical and inclined (42°, 60°)
 - 250 electrons, 250 MeV, vertical and inclined (42°, 60°)
- ★ Difference between old and new FAST simulations on average negligible.
- ★ Bias between FULL and FAST simulations ~1-2% (same as the old FAST).

New FAST vs FULL

250 muons traces - SPMT

The SPMT signal is naturally much smaller, so with larger fluctuations. The trace is well reproduced by the updated FAST mode, **without binto-bin biases** larger than 1-2% (on average) w.r.t. the FULL simulations.

SPMT

- Small showers acquired and transferred to Lyon (since 03/04/2021 with correct firmware) from **79 tanks with pre**production UUBs.
- ➡ SPMT inter-calibration procedure under validation.
 - Next step : inclusion of the SPMT inter-calibration factor in the standard SD data production.
- ➡ FAST simulation with the inclusion of the SPMT implemented.

Thanks for your attention !

Backup

SPMT To-Do(s)

★ SPMT DAQ

Automatic HV setting procedure to be finalized and tested.

★ SPMT (inter-)Calibration

- calibration procedure in Lyon must be automatized;
- addition of the inter-calibration factor (and related quantities) during the merging procedure of the SD events;
- CDASToOfflineConverter to be consequently updated.
- ★ WCD LDF
 - update of the SdCalibratorOG for the SPMT signal integration;
 - inclusion the SPMT signals in the WCD LDFFinder when the LPMTs signal is saturated.

Test of software and firmware 03/02/21-16/02/21

LPMT3 signal vs SPMT signal - tank 20

Clear differences between the software/ firmare installed in the pre-production UUBs and the version in the EA tanks:

- -) increased signal dispersion;
- -) (apparently) increased SPMT gain.

HV values are constant for all the LPMTs and the SPMT in the entire period.

Speak(LPMTs)/Speak(SPMT) vs time - Trak

sPMT cross-calibration - spectra comparison method

- 1. The histograms (with defined binwidth) of LPMT signals in VEM are filled.
- A confidence region from the second bin after the maximum (~150 VEM) to the bin with 15% of saturated events is defined.
- SPMT histogram is filled using an initial β factor. Only the events ending up in the chosen region are considered.
- 4. A distance Q between the histograms is defined and minimized to find the best β
 - A. Dichotomic procedure to define an approximate region around the minimum.
 - B. Evaluation of average Q in small regions of β (smoothing the behavior of Q vs β)
 - C. Cubic fit of Q as a function of β

The resulting spectra of SPMT and LPMT are overlapping by definition.

Small showers physics

Expected flux

Low energy showers with E < few PeV

 $N(>E) \sim 2 \times 10^4 \ (E/GeV)^{-1.7}$ $A = \pi^2 \sin^2(\theta_{max}) \ r^2$ $Rate(>E) \sim N \times A$

log ₁₀ E	rate [Hz] @ th = 400 counts
12.0 - 12.5	0.0030
12.5 - 13.0	0.0061
13.0 - 13.5	0.0084
13.5 - 14.0	0.0107
14.0 - 14.5	0.0102
14.5 - 15.0	0.0080
15.0 - 15.5	0.0046
Total	0.0510

	rate with $r = 10 \text{ m } \& \theta_{max} = 65^{\circ}$
E > 10 ¹³ eV	2.44 Hz
E > 10 ¹⁴ eV	0.049 Hz
E > 10 ¹⁵ eV	0.00097 Hz

Small showers selection :

T1 events **selected** independently in each WCD as 2-fold coincidence of LPMTs with $S_{peak} \gtrsim 450$ FADC counts.

Small showers measured rate : ~0.055 Hz (i.e. ~200 evts/h)

On the left table:

Simulation of low energy **untinned** showers **CORSIKA ver.77100** (using EPOS-LHC and URQMD 1.3cr) and **Offline trunk rev. 33838**

Old FAST vs new FAST

Difference in integrated number of photoelectrons - LPMT1

Difference in integrated number of photoelectrons - LPMT3

✓ Bias between old and new FAST mode becomes on average negligible for large enough signals.

250 muons traces - FULL vs OLD FAST

250 muons traces - FULL vs NEW FAST

250 muons traces - OLD FAST vs NEW FAST

