

CYGNO simulations update

Giulia D'Imperio, Davide Pinci, Fabrizio Petrucci

17/05/21 CYGNO simulation meeting

Simulation of images

Spatial distribution of energy depositions ΔE ,(x,y,z) from MC truth GEANT4 (SRIM) for ER (NR)

$$D_{\rm T}^{60/40} = 115 \frac{\rho}{\sqrt{\rm cm}}$$
 $\sigma_{\rm T0}^{60/40} = (280 \pm 60) \,\mu\text{m}$

For 930V/cm drift field

multiplication & light production in GEM stack

F. Petrucci

Simulation of GEM gain + light production

- Single GEM gain for HV @450V: 400 (portugues group measurement)
- Extraction x Collection efficiency of electrons in GEM1 and GEM2: 0.33

Single GEM gain as measured by F&K

$$\begin{split} \frac{I_3}{I_2}(450V) &= G(450V) \times \epsilon_{extr}^{GEM\#2} \times \epsilon_{coll}^{GEM\#3} = 132 \\ &\epsilon_{extr}^{GEM\#2} \times \epsilon_{coll}^{GEM\#3} = 0.33 \end{split}$$

Single GEM gain as measured by Fernando

Single GEM gain by Fraga et al.

The GEM scintillation in He-CF₄, Ar-CF₄, Ar-TEA and Xe-TEA mixtures

M.M.F.R. Fraga*, F.A.F. Fraga, S.T.G. Fetal, L.M.S. Margato, R. Ferreira Marques, A.J.P.L. Policarpo

LIP-Coimbra, Departamento de Fisica, Universidade de Coimbra, Coimbra 3004-516, Portugal

D. Pinci

Simulation of GEM gain + light production

- Single GEM gain for HV @450V: 400 (portugues group measurement)
- Extraction x Collection efficiency of electrons in GEM1 and GEM2: 0.33

 $\epsilon_{extr} \times \epsilon_{coll} = 0.33$ Reasonable

Therefore:

$$G_1 = G_2 = 130;$$

D. Pinci $G_3 = g = 400;$

Gain fluctuations

→ Gain of 1st GEM (G1) is extracted from an exponential distributions and multiplied by $\varepsilon_{\rm extr} \times \varepsilon_{\rm col}$

Simulation of GEM gain + light production

- Single GEM gain for HV @450V: 400 (portugues group measurement)
- Extraction x Collection efficiency of electrons in GEM1 and GEM2: 0.33
- Light yield: 0.07 photons/electrons
- ORCA Fusion:
 - 2304 x 2304 pixels (1 pixel 6.5 um x 6.5 um)
 - Camera aperture 0.95
 - Sensor size 14.976 mm
 - Sensor calibration → 1 photon = 2 sensor counts
- Active area: 35 cm x 35 cm
- Distance from the GEM: 30 cm
- Geometry factor of light collection: $\Omega=1/(4(d+1)^*a)^2$
 - o d = ratio between image size (350 mm) and sensor size (14.976 mm)
 - a = camera aperture (0.95)

Light for ⁵⁵Fe spot

Prediction from toy MC

GEM voltage: 450V

mean = 14783 counts sigma = 1811 resolution = 0.122 Run 3645 in LIME: GEM @450V, z = 30 cm

- no vignetting correction
- no saturation correction
- select round spots

In the center (vignetting correction =1) ~8000 counts

- → about 1.8 factor less than MC
- → from saturation simulations by Davide we expect 1.7 Residual data-MC difference explained by saturation₆

Saturation simulation

Presentation by Davide: https://cernbox.cern.ch/index.php/s/tJlyEZZPLdkSrH6/download

Jupyter notebook test: https://github.com/qdimperi/cygno-digi-test

Method:

• Add absorption length parameter for e- in the gas λ : $n = n_0 \exp(-z/\lambda)$

- Only GEM3 saturated, G1 and G2 simulated as before
- Simulate the 3D cloud of electrons entering GEM3:
 - \circ spatial smearing given by σ_{oT} , σ_{T} and σ_{oL} , σ_{L} and drift distance z
 - o divide electron cloud in voxels 160(x) x 160(y) x 100(z) μm³
 - o apply formula of saturated gain in each voxel

$$G = A \frac{g}{1 + \frac{n}{n_h}(g-1)}$$

Conversion to number of photons as before

Example event

Results with parameters tuned "manually" by Davide:

- \bullet A = 1./0.68
- $1/n_h = \beta = 2.5e-5$
- $\lambda = 100 \text{ cm}$
- z = 30 cm

tot num of sensor counts after GEM3 including saturation: 7193 tot num of sensor counts after GEM3 without saturation: 10687 Gain GEM3 = 400 Gain GEM3 saturated = 269

- Time of simulation increases significantly
 - → 15s/event for spots of 6 keV

Final image on the sensor 6 keV ER

Energy resolution

With attenuation length λ = 100 cm, z = 30 cm No saturation

mean = 11016, sigma = 1592, resolution = 0.144569 With attenuation length λ = 100 cm, z = 30 cm With saturation

mean = 7282, sigma = 608, resolution = 0.083544