MUON COLLIDER

Update on muon reconstruction performances

$$\mu^+\mu^- \rightarrow H \rightarrow ZZ^* \rightarrow 4\mu$$

 \sqrt{s} = 1.5 TeV and 3 TeV studies

Angela Zaza, Anna Colaleo, Filippo Errico, Paola Mastrapasqua, Rosma Venditti

Muon reconstruction performance

Goal: validate the results of the study on muon reconstruction performance, conducted on signal samples, by making a comparison with the results of track reconstruction performance, shown by Massimo and Alessandro, evaluated on muon gun samples.

Signal samples (muon reconstruction with PFA): $H \to ZZ^* \to 4\mu$		
\sqrt{S}	# events	
I.5 TeV	50k	
3 TeV	50k	

Muon gun (track reconstruction)		
Sample characteristics	#events	
$\theta \in U[10^{\circ}, 170^{\circ}]$ p = I, I0, I00 GeV	100k	
$p_T \in U[0.1,100] \; GeV$ $\theta = 13^{\circ}, 30^{\circ}, 89^{\circ}$	100k	

Samples provided by Massimo.

Reconstruction efficiency

Muon reconstruction efficiency:

$\frac{histo_{num}}{histo_{den}}$

- $histo_{num}$: filled with p_T (θ) of generated muons associated to good quality reconstructed muons. For the reco-gen match, the link between reconstructed and associated particles returned by the reconstruction software is used. good quality muons: $p_T > 5 \, GeV$, $\eta < 2.5$, $D_0 < 0.2 \, cm$, $Z_0 < 1 \, cm$.
- $histo_{den}$: filled with p_T (θ) of generated muons.

Track reconstruction efficiency:

$\frac{histo_{num}}{histo_{den}}$

- $histo_{num}$: filled with p_T (θ) of generated muons associated to good quality tracks. For the reco-gen match, the link between reconstructed and simulated hits returned by the reconstruction software is used. In particular, a track is considered as matched with a gen muon if: purity > 0.75. purity: ratio between the number of superlayers with at least one reco hit matched with a sim hit and the number of superlayers with at least one hit good quality tracks: at least 5 superlayers with at least one hit.
 - $histo_{den}$: filled with $p_T(\theta)$ of generated muons.

Reconstruction efficiency vs p_T

At 90° the reconstruction efficiency shows a drop related to the presence of a hole in the tracking system at the borders of the sensors \rightarrow https://agenda.infn.it/event/25026/contributions/126873/attachments/77754/100382/tracker_studies_2.pdf 4

Reconstruction efficiency vs θ

The muon reconstruction efficiency shows a drop at $\theta \sim 25^{\circ}$ and a decrease for high values of θ , which is not dependent on the applied cuts.

Reconstruction efficiency vs θ

Muon reconstruction, signal samples

In the range of θ 70° - 90°, there is a reduction of the reconstruction efficiency for low p_T muons.

Possible causes of the efficiency reduction?

- These muons are also low energy muons $(p \sim p_T)$, for this reason subject to multiple scattering $\left(\Delta\theta \sim \frac{1}{p}\right)$.
 - Problems in the reco-gen matching?
- Problems in the object reconstruction?

p_T Resolution vs p_T

Muon reconstruction: The p_T resolution worsens, in the region close to the nozzles, as the center of mass energy increases. This effect is related to the fact that, at 3 TeV, muons are emitted more forward than at 1.5 TeV. The distributions of $\frac{\Delta p_T}{p_T}$ corresponding to small values of θ , have more populated tails at 3 TeV, thus resulting in higher resolutions.

p_T Resolution vs p_T

Track reconstruction, muon gun

Taken from Alessandro presentation: https://indico.cern.ch/event/997659/contributions/4191544/ attachments/2174149/3670942/tracker_studies_montella_3 .pdf

p_T Resolution vs θ

Muon reconstruction, signal samples

Track reconstruction, muon gun

p_T Resolution vs θ

Track reconstruction, muon gun

Taken from Alessandro presentation: https://indico.cern.ch/event/997659/contributions/4191544/attachments/2174149/3670942/tracker_studies_montella_3 .pdf

Update on track reconstruction performance with BIB

conformal tracking: 3 steps \sqrt{s} =1.5 TeV		
sample	# events	
Only signal	2500	
Signal + BIB	2500	

Track reconstruction efficiency:

$$\frac{histo_{num}}{histo_{den}}$$

• $histo_{num}$: filled with p_T (θ) of generated muons associated to selected reconstructed tracks. For the association, I have implemented a geometrical match based on the minimization of ΔR .

selected tracks:
$$p_T > 5 GeV$$
, $10^{\circ} < \theta < 170^{\circ}$, $n_{hits} > 4$, $\frac{\chi^2}{ndf} < 10$

 $histo_{den}$: filled with $p_T(\theta)$ of generated muons.

Track reconstruction: signal+BIB

In order to take into account the effect of the BIB in the analysis, we intend to scale, according to the p_T , the number of muons reconstructed without BIB to the track reconstruction efficiency estimated in the scenario with BIB overlay.

Track reconstruction: signal+BIB

Cuts: $p_T > 5 GeV$, $10^{\circ} < \theta < 170^{\circ}$, $n_{hits} > 4$, $\chi^2/ndf < 10$

Tracks reconstructed with the 3-steps configuration

Validation of the reconstruction efficiency results with BIB overlay

I have used the geometrical match to evaluate the track reconstruction efficiency on the samples provided by Massimo. In this case, the DL filter is used with the 3-steps conformal tracking configuration. No selection is applied on the reconstructed tracks.

Conclusions

- Validation: good agreement between the muon reconstruction performance evaluated on signal samples and the track reconstruction performance evaluated on muon gun samples.
- Limits of this study: the muon reconstruction performance with BIB overlay has not been evaluated.
- Questions: causes of the reduction of muon reconstruction efficiency vs θ ? considerations about the proposed strategy for taking into account the BIB impact on the analysis?

THANK YOU!

BACK UP

Track reconstruction: sig+BIB

Cuts: $p_T > 5 GeV$, $10^{\circ} < \theta < 170^{\circ}$, $n_{superlayers} > 4$, $\chi^2/ndf < 10$

