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Plan of the talk

What are neutron stars (NSs)?
NSs as unique opportunities for GW Astronomy
The holy grail of nuclear physics

How ET can make the difference
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Why Investigate binary neutron stars?

* \WWe know they exist (as opposed
to binary BHs) and are among the
strongest sources of GWs

e Despite almost 40 years of
observations with all possible
instruments (radio, IF, optical, X
and gamma) we still don’'t know
their internal structure and
composition.

¢ \WWe expect them to be related to SGRBs: most luminous
phenomena in the universe with energies released are huge: | 0%
erg. Equivalent to what released by the whole Galaxy over ~ |year.

e Also In this case, decades of observations have produced vast
phenomenology but no self-consistent model yet



Very little 1s known about the interior
structure and composition of NSs,
although there Is no lack of models...

el Main difficulties:

ENVELOPE
CRUST

sl © astronomical observations cannot really
provide the radi (but masses)

* nuclear data limrited to heavy 1ons (ten
orders of magnrtude difference)

* M observations reveal properties from

the surface and different EOSs yield a
NS with the same radius and mass

* determining NS EOS would reveal

properties of matter at nuclear densities
(not possible on Earth laboratories)

Lattimer & Prakash (2004) Radius (km



The two-body problem: GR

Modelling binary black holes (BHs) and binary neutron stars
(BNSs) 1s very different and not because the eqgs are different

In the case of BHs we know what to expect:

BH + BH == BH + oravitational waves (GWs)

In the case of NSs the question is more subtle because in general
the merger will lead to an hyper-massive neutron star (HMNS),
namely a self-gravitating object in metastable equilibrium:

NS + NS ey HMNS + GWS + ee ] =y Bl + G5

t's In the Intermediate stage that all the physics and complications
are; the rewards are however high (GRBs, nuclear physics, etc).



‘merger - HNNS w—)p B + torus”
Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold to gravitational collapse

- differences induced by the EOS (“cold” or “hot”):
an EOS with large thermal capacity (ie hotter after merger) will
lead to a HMNS with more pressure support

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; lead to prompt BH and ejection

- differences induced by MAGNETIC FIELDS:
the angular momentum redistribution via magnetic braking or

added magnetic pressure can change the structure of the HMNS

- differences induced by RADIATIVE PROCESSES:
radiative losses could alter the equilibrium of the HMNS



Animations: Kaehler, Giacomazzo, LR

MDA, Baiotti, Giacomazzo, LR (PRD 2008, CQG 2008)
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Waveforms: colc
high-mass binary
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Animations: Kaehler, Giacomazzo, LR
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Waveforms: cold EOS

high-mass binary low-mass binary
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Animations: Kaehler, Giacomazzo, Rezzolla
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Waveforms: hot EQOS

high-mass binary low-mass binary
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high internal energy (temperature) of  no BH produced: the HMNS evolves
the HMNS prevents a prompt collapse on longer (radiation-reaction) timescale



Imprint of the EOS: hot vs cold
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Overall, a smaller inrtial mass and a hot EOS have the same
effect: prolong the life of the HMNS and delay collapse to BH.




0.8
0.6 B
0.4]
0.2f

-0.2

—0.4
~0.6F
~0.8f

0.2

0.1

—02F

Good news related with the inspiral

Determining the properties of the EOS Is rather difficult.
Tidal effects are important and about twice as strong as

- —— NR: M2.9C.12
__ - - —EOBNLOZ 541 = 7, 562 =170

—01F A

500 1000 1500 2000 2500 3000 3500
t/M

expected from Love number

(Newtonian, GR) (Baiotti et al
2010)

| This emerges from the

comparison between the
ongest Inspiral to date and a
OB modelling extended to
include tidal effects.

The match is good only for

K e (2.0 =25 ks




Bad news related with the inspiral

n addition, because these effects become most important
in the very last few orbits, the differences among different

TABLE II: The rms measurement error in various binary pa- EO SS are Sm al | : x o | .

rameters (chirp mass M., dimensionless reduced mass 7, and

weighted average A of the tidal deformabilities) for a range of
total mass M and mass ratio my/m,, together with the signal

to noise ratio p, using only the information in the portion of Th I d | A A f
the inspiral signal between 10 Hz < f < 450 Hz. The dis- e eS_tl mate u ncertal nty O r a

tance is set at 100 Mpc, and the amplitude is averaged over

sky positon and rlatve inclination. binary neutron star inspiral at 100
i) mam MM A aasees . | 1VIpC using the advanced LIGO
s 10 omewows  ms  w | sensitivity below 450 Hz is greater
3.4 1.0 0.00046 0.047 31.3 41
20 o7 oo oms | 82w | than the largest values of A except
b5 os w00 1me s | TOr very low-mass binaries

Einstein Telescope <|—| i n d e re r e-t al ZO O) -

M (M) my/my AM/M An/n AN10* gem®s?) p

2.0 1.0 0.000015 0.0058 0.70 354

2.8 1.0 0.000021 0.0043 1.60 469

s 10 oonomooss 2 sz | | Ne prospects are better for ET but
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On the importance of the HMNS stage

e [he HMNS stage Is essential to extract information
about the EOS but comes at the cost of being a high-

frequency signal.

* With sufficiently sensitive detectors, GWs will work as
the Rosetta stone to decipher the NS interior.

e But what Is sufficiently sensitive! Considering the last
few orbits, the HMNS stage and the ringdown:

SNR (Virgo/LIGO): =03
SNR (advVirgo/LIGO): ~ 2
SNR (ET): ~ 40




Imprint of the EOS: frequency domain

Andersson et al. (GRG 2009)
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A comparison In the frequency space clarifies the
additional complexity and richness of GWs from NSs



The advantages of the post-merger

Let's go back to something
we have already seen: the
merger of a low-mass binary.

(1.4 Mo) As discussed

belore e FIMNSTISRot
massive enough to collapse
immediately and it's losing
angular momentum very
slowly. However; it must
collapse soon or later...




The advantages of the post-merger
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“Almost perfect’ signal: higch SNR, high stability in frequency, a
unique fingerprint.

Not all instruments could exploit it: ET clearly can!



VWhen the two masses are not equal...

In contrast to binary black holes, binary neutron stars do not
show large variations in the mass ratio.

|
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They are important for NSs!

D. Gondek-Rosinska (2009)



T 0.00 22;-5 Animations: Glacomazzo, Koppitz, LR

time [ms)

Total mass : 3.37 Ms; mass ratio :0.80;

the tori are generically more massive
the toril are generically more extended
the toril tend to stable quasi-Keplerian configurations

9 15

B
log(rho)[g/cm']




(h,)z, (r/M)

(h,)z, (r/M)

Gravitational waveforms
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* [he waveforms are very simple with moderate
modulation induced by mass asymmetry.

* No HMNS 1s produced and the QNM ringing (vertical
ine) 1s choked by the intense mass accretion rate (the BH
cannot ringdown...). As a result: small-mass ratios are not
promising signals to extract information about EOS
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s during the inspiral!
s after the merger?

s e

arge magnetic fields but these have been
y neglected. It Is natural to ask:

3_-
3_-
B3-fields influence the dynamics of the tori!

» [ his Is not easy but can be done: relativistic hydrodynamics

s extended to ideal-/V
» [ he B-fields are Initia

magnetospheric effects.
» We have considered |2 binaries (low/high mass) with MFs:

B =0 10510 10210 1056

HD (infinrite conductivity).
ly contained Inside the stars: ie no



Animations: Koppitz, Giacomazzo, LR
0 0.00 16.4

time [ms]

Typical evolution for a magnetized binary
(hot EOS) M = 1.65 M., B =10""G
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log(rho) g/ cm’) log(B)[Gauss]



Imprint of the B-field: time domain
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Imprint of the B-field: frequency domain
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Conclusions

* Binary NSs, besides being prime sources of GWs represent
marvelous laboratories where all physics I1s extreme.

* Detecting GWs from binary NSs will help reach holy gralls in
nuclear physics (EOS of nuclear matter) and in astrophysics
(reveal the central engine of SGRBs)

XAl of this physics, however, comes at high costs:
* a3 good part of the SNR Is built at high frequencies (> | kHz)

* tidal effects are strong and will distinguish different EOSs.

However, using the inspiral only Is hard (although not impossible)
because tidal effects show up only very late

* B-field corrections emerge only after the merger

* None of these problems will be present for ET which will
indeed allow us to understand NSs



