Gravity gradient noise and site characterization for the Einstein Telescope

Mark Beker, Nikhef Amsterdam on behalf of the ET design study team 3rd ET Meeting, Budapest 24 November 2010

mbeker@nikhef.nl

Finite Element Analysis models were developed to better understand the GGN problem

- FEA models have confirmed previous analytical results
- Gained a better understanding of GGN contributions
- Future work for FE analyses
 - In-homogenous / layered medium_{Total Displacement at t = 2.34 s}
 - Cavern geometries
 - Surface wave contributions
 - Testing subtraction schemes
- Improved analytical models developed (Giancarlo Cella, Jan Harms)

$$\mathbf{a}(\mathbf{y}, t) = G \int_{V} \rho(\mathbf{r}, t) \frac{\mathbf{r}'}{|\mathbf{r}'|^3} dV,$$
$$\mathbf{a}^{NN}(\mathbf{y}, t) = \sum_{i} \xi_i(\mathbf{r}, t)^T D \mathbf{a}_i(\mathbf{y}, t_0),$$

ET sensitivity targets can be translated to an equivalent GGN producing seismic noise requirement

Assumptions: - Surface detector

- Isotropic body pressure waves
- Saulson Model

ET sensitivity targets can be translated to an equivalent GGN producing seismic noise requirement

Assumptions: - Surface detector

- Isotropic body pressure waves
- Saulson Model

Can a suitably seismically quiet location be found to satisfy this requirement?

- 2 Trillium 240 seismometers
 - Broadband mHz 30 Hz
 - Hard-rock tile
 - Insulation cover
- Data acquisition systems
 - LabView readout through 18 bit DAQ card
 - Low noise amplifier

- 2 Trillium 240 seismometers
 - Broadband mHz 30 Hz
 - Hard-rock tile
 - Insulation cover
- Data acquisition systems
 - LabView readout through 18 bit DAQ card
 - Low noise amplifier

- 2 Trillium 240 seismometers
 - Broadband mHz 30 Hz
 - Hard-rock tile
 - Insulation cover
- Data acquisition systems
 - LabView readout through 18 bit DAQ card
 - Low noise amplifier

- 2 Trillium 240 seismometers
 - Broadband mHz 30 Hz
 - Hard-rock tile
 - Insulation cover
- Data acquisition systems
 - LabView readout through 18 bit DAQ card
 - Low noise amplifier

- 2 Trillium 240 seismometers
 - Broadband mHz 30 Hz
 - Hard-rock tile
 - Insulation cover
- Data acquisition systems
 - LabView readout through 18 bit DAQ card
 - Low noise amplifier

Characterization of sites is done using spectral variation plots of half hour averages The Netherlands N, Sat Mar 13 21:01:00

40 10/90% level 10-11 Mode 35 HNM/LNM 10-12 30 PSD [(m²/s⁴)/Hz] 10⁻¹³ 25 20 10-14 15 10-15 10 10-16 5 10⁻¹⁷ 0 0.1 10 1 Frequency [Hz]

Characterization of sites is done using spectral variation plots of half hour averages

Characterization of sites is done using spectral variation plots of half hour averages

Seismic noise at 1 - 20 Hz is dominated by anthropogenic activity

Spectrogram Slanic salt mine Romania [(m²/s⁴)/Hz]

Data collected from these sites

Srd party data obtained and analyzed from these sites

EINST

3rd party data obtained and analyzed from

Results will be presented from all sites with a focus on three seismically interesting ones

- Sicily, Italy
- Heimansgroeve, The Netherlands
- Gyöngyösoroszi mine, Hungary
- Slanic Salt mine, Romania
- LSM, Frejus tunnel, France
- LSC, Canfranc, Spain
- Sos Enattos mine, Sardinia, Italy
- Gran Sasso, Italy
- Virgo site, Italy
- Black forest, Germany

- Moxa, Germany
- Konnevesi, Finland

- Kamioka, Japan
- Homestake mine, USA

Results will be presented from all sites with a focus on three seismically interesting ones

- Sicily, Italy
- Heimansgroeve, The Netherlands

Gyöngyösoroszi mine, Hungary

- Slanic Salt mine, Romania
- LSM, Frejus tunnel, France
- LSC, Canfranc, Spain

Sos Enattos mine, Sardinia, Italy

- Gran Sasso, Italy
- Virgo site, Italy
- Black forest, Germany

• Konnevesi, Finland

- Kamioka, Japan
- Homestake mine, USA

Gyöngyösoroszi mine - Hungary

- Old lead-zinc mine currently being rehabilitated
- 80 km north east of Budapest
- Surrounding rock is Andezit and Andezit-tufa
- Underground depths ranging from 60 -400 m at an altitude of 400 m
- Entrance by train through west entrance by lift at the eastern shaft

Two seismic stations installed in the mine Measurements taken from 2-6 April

- Station "A"
 - Down secondary draft 3750 m from entrance
 - 400 m overhead rock
- Station "B"
 - 1450 m from entrance
 - 70 m overhead rock
 - close to ventilation system (~100 m)
- Seismometers placed on tile fixed by concrete to hard rock, then covered by acoustic insulation cover.
- Nearby permanent surface seismic station of the Hungarian Academy of Science

Results from the Hungary site showed it was a low seismic environment

A nearby surface seismic station provided a good indication of attenuation with depth

Laboratorio Subterráneo de Canfranc, Spain

- 8.5 km road tunnel in northern
 Pyrenees between France and Spain
- Access through parallel decommissioned railway tunnel
- Very low background experiments currently housed in lab (2500m water equivalent)
- Seismic measurements taken at 800m depth
- Very low population density

Laboratorio Subterráneo de Canfranc, Spain

The Canfranc site is a low seismic environment with a small spectral variation

Sos Anattos Mine - Sardinia, Italy

- Former lead-zinc mine now converted to a tourist mine
- Near Lula, 50 km south of Olbia on north eastern side of the island
- Access via "cork screw" road tunnel
- Two seismometers installed at 190 m depth

Sos Anattos Mine - Sardinia, Italy

The Sardinia site reached low quiet time spectra and had a "tertiary" microseismic peak

Shallow sites already showed orders of magnitude improvement on the existing GW detector site

Mode from half hour PSDs N

Shallow sites already showed orders of magnitude improvement on the existing GW detector site

Mode from half hour PSDs N

Deeper locations generally show lower seismic noise levels

Mode from half hour PSDs N

LSM, France, 1750 m Gran Sasso, 1400 m Romania, 190 m

Sites show considerable improvement on existing GW detector site

Mode from half hour PSDs N

Sardinia, 185 m Hungary, 400 m LSC, Spain, 800 m

LCGT will profit from a seismically quiet environment

Mode from half hour PSDs N

Kamioka, 1000 m LSC, Spain, 800 m

storage research facility next month

Next step is to ear-mark a few sites for long term investigation

- Criteria for candidate sites
 - Seismic and geological suitability
 - Commitment from local scientific and governing bodies
 - No other large scale infrastructure plans in the area
- Long term study for
 - Seismic noise, seasonal variation, rock stability
 - Geology / hydrology, suitability for large underground facilities
- Consider (self)generation of seismic noise in design phase

Seismic sensor array and filter algorithms can be used to predict and subtract GGN from local sources

- Use secondary sensors to measure the density perturbations around the detector.
- Create models that estimate the sensor to test mass impulse responses.
- Use adaptive filter techniques to estimate and reduce GGN

GW signal

Results of simple filtering algorithm with FEA models show a GGN reduction of 1.5 orders of magnitude

Results of simple filtering algorithm with FEA models show a GGN reduction of 1.5 orders of magnitude

Conclusions

- Suitably seismically quiet locations for the Einstein telescope can be found in Europe
- Production of seismic noise due to our own activities (pumps,people) needs to be monitored and minimized
 - Seismic sensors and filtering schemes can be used for subtraction
- Next step: a long term study of a few sites in Europe
 - Seasonal variation / long term stability
 - Geo / Hydrological studies
 - Drive from local community is important

Summary of all locations

Mode from half hour PSDs N

OP