
Directional-iDBSCAN
a proposal to CYGNO

Igor Pains

Igor Abritta and Rafael A Nobrega

Last presentation
● An implementation of the iDDBSCAN with its iteration part written in cython

was made aiming to reduce the duration of the algorithm.

● The speed boost was not so high as other implementations found in the
literature.

● New ways to accelerate the algorithm were researched.

2

Problems with the 3D
● There was a problem with the duration of the 3D simulation in some runs of

the lime data.

● During the search for the solution for this problem we found about the
parameter “sample_weight” of the “fit()” method of the DBSCAN, that allows
the possibility to assign weights to each point.

3

3D simulation vs Sample Weight

4

3D

Sample_Weight parameter

Replicate the
points based on

the intensity.
(from 3888 to 39442

here)

Send the new
data array to the
DBSCAN to find

clusters.

Run 2320 - Event 135

Create the
sample_weight
array based on

the intensity.
(3888 elements here)

Send the “old”
data array and

the
sample_weight
to the DBSCAN
to find cluster.

Get the
clusters
thought

the labels
attribute.

run time: 1.28 seconds

run time: 0.032 seconds

run time: 40.4 milliseconds

run time: 0.33 milliseconds

run time: 1.32
seconds

run time: 0.0323
seconds

Sample weight parameter
● Since it is already available on the scikit-learn library, no modification directly

in the DBSCAN was necessary.

● The difference between the old and new algorithm is that now the
sample_weight array is built instead of the larger data array with replicated
points, allowing the possibility to submit fewer points to the iterative part of the
DBSCAN and maintain the 3D results.

5

Sample weight parameter - DDBSCAN
● The DDBSCAN algorithm had to be slightly changed in order to use the

“sample_weight”.
○ The “false cluster” (halos) remotion done by the min_samples (input of the DBSCAN) was

removed. It is now done by the length of the smallest cluster found in the DBSCAN part
(DBSCAN seeding).

○ The parts of the algorithm that used to eliminate replicated points to compare to the
dir_minsamples parameter or to send the points to the RANSAC are not necessary any
longer.

● This parameter also solves the problem of the high amount of time used
looping through replicated points.

6

Sample weight parameter - DDBSCAN

7

Run 2320 - Event 135

● This example was one of the “outliers” in
the histogram shown on a previous
presentation.

● If no control parameter is used with the
DDBSCAN (time_threshold or
max_attempts), the gain of speed in this
image is 160x (from 790 to 4.9 seconds).

Conclusions
● The sample_weight parameter is a great addition both to DBSCAN and

DDBSCAN, conciliating results and time efficiency.

● The DDBSCAN specifically can still be optimized, especially the RANSAC
part, which now is probably the most demanding part of the algorithm.

8

