EUCLIDES: 4π highly-efficient light-charged–particle detector [1]

D. Brugnara J. Pellumaj

11/08/2021

[1] D. Testov et al., The 4π highly-efficient light-charged–particle detector EUCLIDES, installed at the GALILEO array for in-beam γ -ray 1 Spectroscopy, Eur. Phys. J. A (2019) 55: 47

EUCLIDES in a nutshell

- Particle discrimination ΔE-E + PSA
- High gamma-ray transparency
- High efficiency thanks to 4-π design
- Event-by-Event Doppler correction
- Reaction channel filter (fusion evaporation reactions)

Geometry

- 80% solid-angle coverage
- Football shape 40 Si telescopes:
 - 1) 15 pentagons
 - 2) 20 hexagons
 - 3) 5 4-ways segmented hexagons at forward angles
- Absorber can/must be placed to protect the detectors from scattered beam

E detector

- Thickness: 1000 μm
- Bias :~140-180 V
- Leakage Current: ~500 nA
- Capacitance: 130 pF
- FWHM 30 keV

ΔE detector

- Thickness: ~150 μm
- Bias :~40-50 V
- Leakage Current: ~100 nA
- Capacitance: 850pF
- FWHM 50 keV

Particle discrimination

- Excellent discrimination of light ejectiles
- PSA can also be used

Doppler correction

- Event by event Doppler correction based on the kinematics
- Example with GALILEO, most likely limiting the intrinsic resolution
- AGATA will perform even better thanks to its position sensitivity
- Dramatic difference in FWHM

Partial y-spectrum α -gate requested ¹²C+²⁴Mg (45MeV) \rightarrow (³⁶Ar)* \rightarrow ³¹P

Reaction channel filter

 Significant suppression of background from other reaction channels

Plunger configuration

- Can be operated in combination with the plunger at the cost of removing the backward portion f the solid angle
- Distances between target and stopper foil from a few um tens of mm with a sub-um precision

In collaboration with Institut für Kernphysik, Universität zu Köln, Germany θ=152° 129° 119°

5 segmented 10 single

DAQ and electronics

- GGP readout
- 4 Galileo digitizers
- 112 channels in total for $4-\pi$ configuration
- 16-ch chrge-sensitive preamplifiers in the reaction chamber
- Can be added to the trigger processor

Great preamplifier performance as a function of the input capacitance

Some technical details

- A cylindrical Al absorber needs to be added (if necessary) to protect the telescopes from scattered beam
- Detection threshold 1 MeV in ΔE
- Max (tested) rate 45 kHz (100 kHz for forward detectors)
- Fits in a reaction chamber with 220 mm diameter
- Included in AGATA Geant4 simulation code

- Great reaction filter for fusion evaporation reactions
- High efficiency (4-π design)
- Can improve dramatically the Doppler correction procedure
- Precise particle discrimination capabilities
- Can be used in a plunger setup
- Can be added to the trigger processor