PRISMA

Performance and recent upgrades

F. Galtarossa and L. Corradi on behalf of the PRISMA collaboration

AGATA pre-PAC meeting 8-10 November 2021

Trajectory reconstruction

A physical event is composed of:

- Entrance position $(x,y) \rightarrow (\theta, \phi)$
- Position at the focal plane (x',y')
- Time-of-Flight (ToF)
- Energy (ΔE-E)

MCP detector MWPPAC detector Δt MCP-MWPPAC Ionization Chamber

Solid angle $\Delta\Omega$	~ 80 msr
Angular acceptances	$\Delta \theta \approx \pm 6^\circ$; $\Delta \phi \approx \pm 11^\circ$
Energy acceptance	±20%
Momentum acceptance	±10%
Mass resolution	ΔA/A ≈ 1/300
Nuclear charge resolution	ΔZ/Z ≈ 1/60
Maximum Bp	~ 1.2 Tm
Dispersion	Δp/p ≈ 4 cm/%
Distance target-FPD	~ 6.5 m
IC Energy resolution	~ 1%
MCP and MWPPAC x,y position resolutions	~ 1 mm
MCP and MWPPAC timing resolutions	~ 350 ps
Maximum rate at the FP	~ 3 kHz
θ_{PRISMA} (AGATA standard position)	20° < θ < 88°
θ_{PRISMA} (AGATA close position)	35° < θ < 88°

F. Galtarossa, L. Corradi

Upgrades and recent tests

Hardware:

- Mesytec preamplifiers and amplifiers for the IC;
- Modification of the read-out, dead time reduced significantly;
- Fixed problem of efficiency on the entrance MCP detector;
- New more efficient MWPPAC (tests to be completed);
- Determination of the the y position of the incoming ions in the IC.

Software:

- Updated the PRISMA libraries and integrated them in the AGATA software;
- Two data frames with raw and pre-analyzed data for a quick check of the correct coincidence PRISMA-AGATA during the experiment.

F. Galtarossa, L. Corradi

Development of a new more efficient MWPPAC

F. Galtarossa, L. Corradi

y position determination in the IC

Having a y coordinate should help in improving the Z resolution of the IC and better control the ion trajectories

F. Galtarossa, L. Corradi

Nuclear charge identification

For a good identification in Z, ions entering PRISMA must have energies higher than ~ 3-4 MeV/u on average, depending on Z.

Compute carefully the energy losses in target (accounting for possible tilting angle), backing, degrader.

F. Galtarossa, L. Corradi

Cross section sensitivity

F. Galtarossa, L. Corradi

Lol's for PRISMA and required beams

F. Galtarossa, L. Corradi

Summary

□ PRISMA has been so far operated in standard configuration for **MNT** studies;

- In many years of experience the optimum performance has been achieved for the detection of ions with 30 < A < 130 at 3-6 MeV/u, at angles θ_{lab} > 20° and with max 1-3 kHz trigger rate at the focal plane;
- ❑ With the newly developed MCP and MWPPAC we will be able to efficiently detect also light ions in the range 6 < Z < 14;</p>
- □ For A > 130-140 the mass separation becomes rapidly a problem;
- □ The mechanically allowed angular ranges for PRISMA coupled to AGATA are $20^{\circ} < \theta < 88^{\circ}$ for AGATA in standard position and $35^{\circ} < \theta < 88^{\circ}$ for AGATA in close-up position.
- **D** PRISMA sensitivity limit is in the **few** μ **b** range.

PRISMA detectors

F. Galtarossa, L. Corradi

Nuclear charge identification

F. Galtarossa, L. Corradi

In-beam tests of the new MCP

The last experimental campaigns unveiled a region of the detector with reduced efficiency.

This was attributed to:

- low tension of some gold-plated tungsten wires of which the positionsensitive anode is composed;
- overlapping of near wires.

A new position-sensitive anode has been assembled and mounted and two days of beam time were allotted during the last PAC meeting for the test of the new configuration.

In-beam tests of the new MCP

8-9 February, 2021 - ⁵⁸Ni @ E = 225 MeV

 In the new configuration the efficiency of the entrance detector of PRISMA turned out to be about 90% and no low efficiency region was evidenced in the X-Y scatter-plot

F. Galtarossa, L. Corradi

The ¹⁹⁷Au+¹³⁰Te experiment

F. Galtarossa, L. Corradi

The $^{136}Xe + ^{238}U$ system at $E_{beam} = 1 \text{ GeV}$

F. Galtarossa, L. Corradi