Calcolo Scientifico: appunti di viaggio

Concezio Bozzi Seminario CNAF 12 Maggio 2021

About myself

I have served in various committees

INFN I am senior staff researcher at Istituto Nazionale di Fisica Nuclear My research activity: CMS SLB decays Vertex DETector R&D on silicon BABAR strip tracker Silicon Vertex Tracker, B mixing, Vub, Distributed computing, simulation production TCAD&G4 simulations Vub averages semileptonic analyses: B⁰ mixing, hadronic R(D*) Measurement of $\chi_{\rm b}$ production and spectroscopy **Computing resource manager** LHCD **R&D on software and computing for LHCb upgrade**

R&D on software and computing for LHCb upgra Editor of SW & computing upgrade TDRs Computing Project Leader

But what I really like is:

A lightning summary of flavour physics

Search for physics beyond the UT_{fit} Standard Model, by measuring summer18 decays of heavy hadrons Δm_{e} Am. 0.5 ATLAS / CMS: V_{ub} Vcb open the Box Direct real particles observation -0.5 Flavour physics: shake the Box, listen Indirect -0.5 0.5 0 _1 observation virtual particles

 Δm_d

 $\overline{\rho}$

Precision

- Measurements of the neutral B meson oscillation frequency
- Performed by using very different technologies
 - "snailmail" grid in the 90s
 - "human" grid in the 00s
 - "orthodox" grid in the 10s

R. Aaij et al (LHCb Collaboration), A precise measurement of the B₀ meson oscillation frequency, Eur.Phys.J.C 76 (2016) 7, 412

Tensions with SM

- Measurements of CKM matrix element |V_{ub}| with Babar data
- Tests of lepton flavour universality with LHCb data
 - From (*impossible*) to (*impossible*)²

 $R(D^*)$

J. P. Lees et al (Babar Collaboration), Study of B--> X₀ In decays in BB(bar) events tagged by a fully reconstructed B-meson decay and determination of Vub, Phys.Rev.D 86 (2012), 032004

R. Aaij et al (LHCb Collaboration), Test of Lepton Flavor Universality by the measurement of the $B_0 \rightarrow D_{*-} t_+ n_t$ branching fraction using three-prong tau decays, Phys.Rev.D 97 (2018) 7, 072013

R. Aaij et al (LHCb Collaboration), Measurement of the ratio of the $B_0 \rightarrow D_{*-} t_+ n_t$ and $B_0 \rightarrow D_{*-} \mu_+ n_{\mu} s$ branching fractions using threeprong tau-lepton decays, Phys.Rev.Lett. 120 (2018) 17, 171802

Simulation production: a "human" grid...

BABAR SIMULATION PRODUCTION – A MILLENNIUM OF WORK IN UNDER A YEAR

D. A. Smith, SLAC, Menlo Park, CA, USA F. Blanc, Univ. of Colorado, Boulder, CO, USA C. Bozzi, D. Andreotti, INFN, Ferrara, Italy

Abstract

The BaBar experiment requires simulated events beyond the ability of a single computing site to provide. This paper describes the evolution of simulation and job management methods to meet the physics community requirements and how production became distributed to use resources beyond any one computing center. The evolution of BaBar simulation along with the development of the distribution of the computing effort is described.

As the computing effort is distributed to more sites there is a need to simplify production so the effort does not multiply with number of production centers. Proper tools are created to be flexible in handling errors and failures that happen in the system and respond accordingly, to reduce failure rates and production effort.

billion events. SP5 in 2003 would produce events for run cycles 1-3, and need 1.6 billion events. For SP6 it was recognised that the new reconstruction code would not produce significantly different events than what was produced in SP5, so SP6 would only produce events for run cycle 4, and SP5 could be used for analysis of run cycles 1-3. This change resulted in SP6 only needing 1 billion events to match the request.

This resulted in the fact that SP5 would be the largest requested production cycle in BaBar, and would need a greater amount of distribution of the computing effort to get done on time. This effort was performed and finished earlier this year, and I will concentrate on this effort as a description of a complete large scale computing effort.

RESOURCES NEEDED

Simu Production by Week

Simulation production: a "human" grid...

BABAR SIMULATION PRODUCTION – A MILLENNIUM OF WORK IN UNDER A YEAR

D. A. Smith, SLAC, Menlo Park, CA, USA F. Blanc, Univ. of Colorado, Boulder, CO, USA C. Bozzi, D. Andreotti, INFN, Ferrara, Italy

Abstract

The BaBar experiment requires simulated events beyond the ability of a single computing site to provide. This paper describes the evolution of simulation and job management methods to meet the physics community requirements and how production became distributed to use resources beyond any one computing center. The evolution of BaBar simulation along with the development of the distribution of the computing effort is described.

As the computing effort is distributed to more sites there is a need to simplify production so the effort does not multiply with number of production centers. Proper tools are created to be flexible in handling errors and failures that happen in the system and respond accordingly, to reduce failure rates and production effort.

billion events. SP5 in 2003 would produce events for run cycles 1-3, and need 1.6 billion events. For SP6 it was recognised that the new reconstruction code would not produce significantly different events than what was produced in SP5, so SP6 would only produce events for run cycle 4, and SP5 could be used for analysis of run cycles 1-3. This change resulted in SP6 only needing 1 billion events to match the request.

This resulted in the fact that SP5 would be the largest requested production cycle in BaBar, and would need a greater amount of distribution of the computing effort to get done on time. This effort was performed and finished earlier this year, and I will concentrate on this effort as a description of a complete large scale computing effort.

RESOURCES NEEDED

Simu Production by Week

Ш

Simulation production: a "human" grid...

BABAR SIMULATION PRODUCTION – A MILLENNIUM OF WORK IN UNDER A YEAR

D. A. Smith, SLAC, Menlo Park, CA, USA F. Blanc, Univ. of Colorado, Boulder, CO, USA C. Bozzi, D. Andreotti, INFN, Ferrara, Italy

Abstract

The BaBar experiment requires simulated events beyond the ability of a single computing site to provide. This paper describes the evolution of simulation and job management methods to meet the physics community requirements and how production became distributed to use resources beyond any one computing center. The evolution of BaBar simulation along with the development of the distribution of the computing effort is described.

As the computing effort is distributed to more sites there is a need to simplify production so the effort does not multiply with number of production centers. Proper tools are created to be flexible in handling errors and failures that happen in the system and respond accordingly, to reduce failure rates and production effort. billion events. SP5 in 2003 would produce events for run cycles 1-3, and need 1.6 billion events. For SP6 it was recognised that the new reconstruction code would not produce significantly different events than what was produced in SP5, so SP6 would only produce events for run cycle 4, and SP5 could be used for analysis of run cycles 1-3. This change resulted in SP6 only needing 1 billion events to match the request.

This resulted in the fact that SP5 would be the largest requested production cycle in BaBar, and would need a greater amount of distribution of the computing effort to get done on time. This effort was performed and finished earlier this year, and I will concentrate on this effort as a description of a complete large scale computing effort.

RESOURCES NEEDED

Simu Production by Week

	Mo	cal	Esp	ress	50 [BABAR.
Andreotti	9 0		MocaEspresso		0	
	ons		General Info			
	Release version:	9.9.2	Num. of events:	10000	000	Localization O
			-		Release version:	8.8.0i
	Run range:	34675-34690	Max threads:		Objy boot:	/mcprod/disk01/DB/sp3prod/BaBar.BOOT
	User:	bbrprod		Notes	Release dir:	/babar/bfroot/dist/releases/8.8.0i/bin/SunOS!
г	Fake mode				Prod tools dir:	/mcprod/disk01/bfroot/prod/ProdTools/
		B	ecovery Info	Base local dir:	/raid01/STAGE/bbrprod/	
	Send email for feedl	ack 🗖	Email address:	bbrprod@	Base remote dir:	/objy/databases/MC-Import/
				Remote account:	bbrdist	
	Checksum transferr	ed files 📕	Transfer attemp	Remote host:	datamove3.slac.stanford.edu	
					Xdr base dir:	prod/log/allruns/
		Xab	file parameters		User name:	bbrprod
		Local dir:	/raid01/STAGE/bbrpro	d/20010618/	Email for feedback:	bbrprod@
	Transfer xdb files	E Remote dir:	/objy/databases/MC-	Import/caspur/200106	SP name:	3
		Sp version:	3		Max retries:	5
	🗖 Use "-filled" opti	on New SCN ea	ch (sec.): 60	Compress on th	Local ssh:	/usr/bin/ssh
					Local sum:	/usr/bin/sum
		Xdr and	Log file parameters		Local bbftp client:	/afs/infn.it/user/b/bbrprod/tools_under_cons
		Xdr Remot	e dir: /objy/databases	/MC-Import/caspur/x	Remote sum:	/usr/bin/sum
т	Fransfer and Archive		dir: /roid01/STACE	/bbrprod/loge/	Remote bbftp server:	/u/br/andreott/bbftp/bbftpd
	and log mes	Log Loca	e dir: /obiv/databases	s/MC-Import/caspur/li	Max streams:	10
		Log Kelliot				OK Cancel
	_ 6	io!		Exit		

...but also a real (prototype) grid

Portl

First results

- Some hundreds of jobs submitted to all italian sites (10) in different times of the day for ~1 week.
- Jobs submitted to Ferrara had ~95% of success.
- Jobs submitted to other italian resources had $\sim 60\%$ of success.
- . Main failure causes have been
 - Problems of the Resource Broker (due to Globus services: ~7%)
 - Problems in remote access to our Objy DB (due to simultaneous accesses and network overload: ~33%)
 - No showstoppers

Portland, Oregon – October 24th 2003 IEEE

IEEE NSS - Concezio Bozzi

1

Reviewing computing models and resources at CNAF, INFN, CERN, and DoE

- 2007 2012 Italian representative, appointed by the INFN Executive Board, in the CERN WLCG Computing Resources Scrutiny Group. Referee of ATLAS and CMS computing
- 2010 member of the DoE committee reviewing computing and operations of the US LHC collaborations, Argonne Nat. Lab. IL (US)
- 2005 2011 member of the INFN committee reviewing scientific computing of the LHC experiments in Italy, the Italian Tier1 at CNAF, the INFN Grid and other EU-funded projects. Committee chair in 2007-2011
- 2005 member of CERN committee in charge of the review of the Computing Technical Design Reports of the LHC experiments

Il piano per il Tier1

CNAF PLAN SEPTEMBER 2011										
	2011	2011 2012				2013				
Experiment	CPU	DISK	TAPE	CPU	DISK	TAPE	CPU	DISK	TAPE	
	HS06	TB-N	тв	HS06	TB-N	TB	HS06	TB-N	TB	
ALICE	22200	1501	2400	25890	1749	3098	29830	1653	5377	
ATLAS	22600	2480	3000	25900	2700	3600	27300	3000	4000	
CMS	18300	2400	6500	18850	2860	6630	18850	3510	7670	
LHCB	9750	525	520	16950	1425	930	16500	1665	1200	5. C
Total LHC TIER1	72850	6906	12420	87590	8734	14258	92480	9828	18247	
BaBar	2360	350	0	2360	350	0	2360	350	0	
SuperB (dal 2011)	2500	100	0	2500	200	0	2500	200	0	
CDF	7000	300	15	8000	467	15	8000	467	15	1
LHCB TIER2	5400	0	r 0	7200	33	F 025	7200	× 0	P 025	
TOTALE GRUPPO I	17260	750	15	20060	1050	640	20060	1050	640	
AMS2	2457	143	50	5400	384	220	5400	384	220	
ARGO	800	160	752	1200	224	986	1200	224	986	
AUGER	1200	110	• 0	1600	160	0	1600	160	0	
FERMI/GLAST	1400	60	40	1400	60	40	1400	60	40	
MAGIC	450	30	50	500	45	70	500	45	70	
PAMELA	600	60	80	600	70	96	600	70	96	
Virgo	7500	_	Ban	art of th	· Car	- nutin	Been		Constin	Crown
TOTALE GRUPPO II	14407	_	Rep	ort or th	e con	nputing	y Reso	urces	Scrutin	y Group
All experiments	104517									
All w/ overlap factor	87098									
CNAF TOTAL (PLAN)	87098									
Effective overlap										
CNAF to be procured	21171									
Fresh resources					C	RSG curr	ent comp	position		
si posticipa al 2013	s la sos	STI C.I	Bozzi (Ita	aly), T.Cas	s (CER	N), C.Dia	conu (Fra	ince), D.E	Espriu (Sj	pain, Chainnan).
012 è in backun N	lel 201	3	J.Fh	mn (UK), I	M.Gasth	uber (Ge	ermanyl.	D.Groep	(The Net)	herlands).
orz e in backup. I	101 201								the state of	in Colum
			A.I	azzarini (USAJ, V	v. Trischu	ik (Canad	aj, B.vin	ter (Nord	ic Grid),
				H.	Rensha	II (CERN	IT, Scier	tific Sec.	retary)	

1

Buone notizie

- Lavori infrastrutturali completati
- Inaugurazione ufficiale a inizio giugno
 - <u>http://www.cnaf.infn.it/</u> <u>main/index.php/Chi_Si</u> <u>amo/Video_Inaugurazi</u> <u>one_Tier_One</u>
- Il centro funziona bene e fornisce adeguato supporto agli esperimenti

al Consiglio Direttivo INFN 30 Ottobre 2009 LHC ത Calcolo Relazione CB,

Managing LHCb resources since 2013

LHCb Computing **Resources: 2022**

				LHCb-PUB-2020-001		LHCb-PUB-2	020-005	THIS DOCUMENT		
reau	ests			20	2021)22	2022		
		LHCb		Request	2021 req. / 2020 CRSG	Request	2022 req. / 2021 CRSG	Request	2022 req. / 2021 CRSG	
			Tier-0	175	179%	235	134%	189	108%	
		WICG	Tier-1	574	195%	770	134%	622	108%	
		CDU	Tier-2	321	166%	430	134%	345	345 107% 50 100%	
		CPU	HLT	50	500%	50	100%	50	100%	
			Sum	1120	188%	1485	133%	1206	108	
			Others		n/a	50	n/a	50	100%	
		Total	1	1,170	193%	1,535	131%	1,256	107%	
I UCh D	ublic Note	Diale	Tier-0	18.8	109%	33.3	177%	26.5	141%	
LUCD L	ublic Note		Tier-1	37.6	119%	66.6	177%	52.9	141%	
Issue:	0	DISK	Tier-2	7.2	168%	12.8	177%	10.2	141%	
Revision:	0		Total	63.7	120%	112.7	177%	89.6	141%	
Reference:	LHCb-PUB-2021-002		Tier-0	44	121%	81	184%	81	184%	
Created:	1st February 2021	Tape	Tier-1	76	135%	139	184%	139	184%	
Last modified:	15th February 2021		Total	119.7	130%	219.9	184%	219.9	184%	
-										

Prepared By: LHCb Computing Project

C. Bozzi/Editor

CPU Work in WLCG year (kHS06.years)	2021	2022 LHCB-PUB- 2020-005	2022 THIS DOCUMENT
First pass sprucing	70	160	80
End-of-year sprucing	70	160	80
Simulation	760	870	870
Core and distributed computing infrastructure	10	10	10
User Analysis and working group productions	260	335	220
Total Work (kHS06.years)	1170	1535	1260
LHCb-TDR-018 (2021 pledge)	860 (934)	1580	1580

Disk storage usage forecast (PB)		2021	20 LHCb 2020	22 -PUB- 0-005	20 This do	22 cument
	Run1+Run2 pp data		170		10.2	
	Run1+Run2 PbPb + SMOG		17.5	73.7	10.2	65.9
	Run3: FULL		13.7		13.7	
Real data	Run3: TURBO	37.8	30.3		30.3	
	Run3: TURCAL		3.7		3.7	
	Run3: Minimum bias		2.4		2.4	
	Run3: PbPb + SMOG2		5.6		5.6	
Simulated	Run1+Run2 Simulated Data	10.0	8.7	10.0	8.7	10.0
data	Run3 simulated data	10.0	2.2	10.9	2.2	
Other	User data	15.0	8.5	20.2	1.8	12.8
Other	Buffers	15.9	19.7	28.2	11.0	
Total	Total			112.7		89.6
	LHCb-TDR-018 (2021 pledge)	66.0 (58.7)		111.0		111.0

Tape storag	e usage forecast (PB)	2021	20	22	
Dum1 I	RAW data (pp+HI+fixed target)		38.4		
Run1 +	RDST data (pp+HI+fixed target)	81.1	13.7	82.1	
Runz	ARCHIVE		30.0		
	pp data (FULL+TURBO+TURCAL)		120.1	137.8	
Pun3	minimum bias / no-bias	38.6	0.6		
Kulij	Heavy Ion Data + fixed target	56.0	5.6		
	ARCHIVE (data+MC)		11.5		
Total		119.7		219.9	
	142.0 (108.7)		243.0		

Managing LHCb resources since 2013

Issue Revision

Created:

30x increase in throughput from the upgraded detector, Without corresponding jump in offline computing resources

- Software performance: much to gain!
 - Better utilization of current multiprocessor CPU architectures
 - Enable code vectorization
 - Modernize data structures
 - Reduce memory usage
 - Optimize cache performance
 - Remove dead code
 - Replace outdated technologies
 - Enable algorithmic optimization

S. Roiser and C. Bozzi, The LHCb Software and Computing Upgrade towards LHC Run 3, J.Phys.Conf.Ser. 1085 (2018) 3, 032049

C. Bozzi and S. Roiser, The LHCb software and computing upgrade for Run 3: opportunities and challenges, J.Phys.Conf.Ser. 898 (2017) 11, 112002

- Software performance: much to gain!
 - Better utilization of current multiprocessor CPU architectures
 - Enable code vectorization
 - Modernize data structures
 - Reduce memory usage
 - Optimize cache performance
 - Remove dead code
 - Replace outdated technologies
 - Enable algorithmic optimization

S. Roiser and C. Bozzi, The LHCb Software and Computing Upgrade towards LHC Run 3, J.Phys.Conf.Ser. 1085 (2018) 3, 032049

C. Bozzi and S. Roiser, The LHCb software and computing upgrade for Run 3: opportunities and challenges, J.Phys.Conf.Ser. 898 (2017) 11, 112002

LHCb-TDR-017 Editor: C. Bozzi

- Software performance: much to gain!
 - Better utilization of current multiprocessor CPU architectures
 - Enable code vectorization
 - Modernize data structures
 - Reduce memory usage
 - Optimize cache performance
 - Remove dead code
 - Replace outdated technologies
 - Enable algorithmic optimization

S. Roiser and C. Bozzi, The LHCb Software and Computing Upgrade towards LHC Run 3, J.Phys.Conf.Ser. 1085 (2018) 3, 032049

C. Bozzi and S. Roiser, The LHCb software and computing upgrade for Run 3: opportunities and challenges, J.Phys.Conf.Ser. 898 (2017) 11, 112002

Defining the computing model for LHCb Upgrade

- Concepts developed and implemented during Run 2 to become predominant
 - Split HLT → real-time alignment and calibration
 - TURBO stream for majority of physics program
 → RAW events discarded
 - FULL and CALIBRATION streams to insure flexibility → filter & slim offline
- Offline CPU computing needs dominated by simulation
 - Number of events to be simulated scales with luminosity
 - Simulation time per event scales with pileup
 - → CPU simulation explodes → need for faster simulations
- Offline storage driven by trigger output bandwidth
 - MC saved in μDST, so little impact on storage

C. Bozzi and S. Roiser, Towards a computing model for the LHCb Upgrade, EPJ Web Conf. 214 (2019), 03045

> C. Biscarat et al, System performance and cost modelling in LHC computing, EPJ Web Conf. 214 (2019), 03019

Defining the computing model for LHCb Upgrade

- Concepts developed and implemented during Run 2 to become predominant
 - Split HLT → real-time alignment and calibration
 - TURBO stream for majority of physics program → RAW events discarded
 - FULL and CALIBRATION streams to insure flexibility → filter & slim offline
- Offline CPU computing needs dominated by simulation
 - Number of events to be simulated scales with luminosity
 - Simulation time per event scales with pileup
 - → CPU simulation explodes → need for faster simulations
- Offline storage driven by trigger output bandwidth
 - MC saved in μDST, so little impact on storage

C. Bozzi and S. Roiser, Towards a computing model for the LHCb Upgrade, EPJ Web Conf. 214 (2019), 03045

> C. Biscarat et al, System performance and cost modelling in LHC computing, EPJ Web Conf. 214 (2019), 03019

LHCb-TDR-018 Editors: C. Bozzi, S. Roiser

Run3 Computing model

- Concepts developed and implemented during Run 2 to become predominant
 - Split HLT \rightarrow real-time alignment and calibration
 - TURBO stream for majority of physics program → RAW events discarded
 - FULL and CALIBRATION streams to insure flexibility → filter & slim offline
- Offline CPU computing needs dominated by simulation
 - Number of events to be simulated scales with luminosity
 - Simulation time per event scales with pileup
 - \rightarrow CPU simulation explodes \rightarrow need for faster simulations
- Offline storage driven by trigger output bandwidth
 - MC saved in µDST, so little impact on storage

C. Bozzi and S. Roiser, Towards a computing model for the LHCb Upgrade, EPJ Web Conf. 214 (2019), 03045

C. Biscarat et al, System performance and cost modelling in LHC computing, EPJ Web Conf. 214 (2019), 03019

LHCb computing project leadership

- CB project leader starting January 2019
- Research and development activities in core software and distributed computing
- Operational tasks in data handling and processing, services, core software and distributed computing infrastructures
- Project interfaces to WLCG, funding agencies, HSF, other LHCb software projects (Real-Time Analysis, Data Processing and Analysis, Simulation)

Resources at CINECA

- PRACE grant (with other LHC experiments) to exploit the Marconi/A2 partition at CINECA
- Infrastructure set up to comply with experiments requirements
 - CVMFS, network connectivity
 - Collaboration with CNAF and CINECA
 - DIRAC development to exploit manycore architectures
 - Using DIRAC "pool", an <u>inner</u> <u>computing element</u>
 - Parallel jobs matching

Resources at CINECA

- PRACE grant (with other LHC experiments) to exploit the Marconi/A2 partition at CINECA
- Infrastructure set up to comply with experiments requirements
 - CVMFS, network connectivity
 - Collaboration with CNAF and CINECA
 - DIRAC development to exploit manycore architectures
 - Using DIRAC "pool", an <u>inner</u> <u>computing element</u>
 - Parallel jobs matching

EPJ Web of Conferences **245**, 09009 (2020) *CHEP 2019* https://doi.org/10.1051/epjconf/202024509009

Extension of the INFN Tier-1 on a HPC system

Tommaso Boccali¹, Stefano Dal Pra², Daniele Spiga³, Diego Ciangottini³, Stefano Zani², Concezio Bozzi⁴, Alessandro De Salvo⁵, Andrea Valassi⁶, Francesco Noferini⁷, Luca dell'Agnello², Federico Stagni⁶, Alessandra Doria⁸, Daniele Bonacorsi⁹

Thanks for your attention!