

nature

La misura della violazione di fase oce nel settore leptonico: stato e prospettive

Lorenzo Magaletti (Politecnico di Bari & INFN Bari) per il gruppo T2K di Bari

Congresso della sezione INFN e del Dipartimento di Fisica di Bari 22 Giugno 2021

Mixing of three neutrinos

Neutrino oscillations at T2K

Near detector complex

at 280 m from the target

Intense high purity muon (anti)neutrino beam from J-PARC to Super-K to study:

- Muon (anti) neutrino disappearance ν_µ→ν_µ (ν̄_µ→ν̄_µ)
- Ψ Electron (anti) neutrino appearance $V_{\mu} \rightarrow V_{e}$ ($\overline{V}_{\mu} \rightarrow \overline{V}_{e}$)
- Rich program of:
 - neutrino cross sections studies with near detectors
 - "exotic" physics: sterile neutrinos, etc...

T2K one of the biggest international collaboration of neutrino LBL

~500 physicists, 69 institutions, 12 countries

Europe	261
France	38
Germany	5
Italy	28
Poland	28
Russia	19
Spain	14
Switzerland	30
UK	99

Americas	96
Canada	26
USA	70

Asla	117
Japan	114
Vietnam	3

Very strong European contribution including CERN

Neutrino oscillations at T2K

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta m_{31}^2 \frac{L}{4E}$$

Precision measurement of θ_{23} and Δm^{2}_{31} CPT test with anti-neutrino mode $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E_{\nu}} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - s_{13}^{2})\right] & \theta_{13} \text{ driven} \\ & +8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP} - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & CP \text{ even} \\ & \mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta_{CP}\sin\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & CP \text{ odd} \\ & +4s_{12}^{2}c_{13}^{2}(c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP})\sin\frac{\Delta m_{12}^{2}L}{4E_{\nu}} & Solar \text{ driven} \\ & \mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) & Matter \text{ effect (CP odd)} \\ & = 6c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) & Matter \text{ effect (CP odd)} \\ & = 6c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) & Matter \text{ effect (CP odd)} \\ & = 6c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) & Matter \text{ effect (CP odd)} \\ & = 6c_{13}^{2}s_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{13}^{2}L}{4E_{\nu}}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) & Matter \text{ effect (CP odd)} \\ & = 6c_{13}^{2}s_{13}$$

$\mathbf{\hat{e}}$ $\mathbf{\theta}_{13}$ dependence of the leading term

 θ_{23} dependence of the leading term ($\theta_{23}=45^{\circ}$ or $\theta_{23} \ge 45^{\circ}$?)

 \checkmark CP odd phase delta: asymmetry of probabilities $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ if sin $\delta \neq 0$

 \mathbf{V} Matter effect: V_e (\overline{V}_e) appearance enhanced in normal (inverted) mass hierarchy

6

Learning from V_e (\bar{V}_e) appearance

T2K experimental setup

The off-axis neutrino beam

Enhance CCQE-like interactions (signal at Super-Kamiokande)
 Reduces background from π⁰ interactions
 Reduces V_e contamination (less than 1%) at the peak

 E_{v} (GeV)

ND280 (off-axis)

- Magnet: B = 0.2 T
- **TPC:** p measurement + particle-ID with dE/dx
- **FGD:** Fine-grained detectors $(2 \times 0.8 t) \rightarrow$ FGD1 (C), FGD2
- $(C+H_2O)$
- SMRD: magnetized muon range detector
- **POD:** pi-zero detector (Pb/brass-H₂O-scintillator)
- **ECal:** electromagnetic calorimeter

INGRID (on-axis)

v_µ CC rate → monitor beam profile and stability
 Fe/Scintillator tracking calorimeter (16 Fe/Scint modules + 1 central one made of scintillator only)

Neutrino cross sections at T2K energies

Data

RHC CC-v,

- NEUT 5.4.0 (χ^2 =14.634)

----- NuWro 19.02 (χ²=32.077)

GENIE 2.12.10 (χ^2 =16.319)

RHC CC-V

24

22

20

18

16

14

12 10

T2K FHC 11.92 × 10²⁰ POT

T2K RHC 6.29 × 10²⁰ POT

FHC CC-v.

0° <= θ <= 45°

- At T2K energies the main kind of interactions are **CCQE** Other neutrino interactions with production of **pions** in the final state are important as well
 - Discrepancies between different theoretical models
 - x-sec are not completely understood at T2K energies

Latest x-sec measurement at ND280:

- v_{e} and \bar{v}_{e} measurement crucial for CPV
- v_{μ}/\bar{v}_{μ} important for oscillation analysis
- Carbon/Oxigen Crucial for ND280 (CH, O) to SK (H₂O) extrapolation

A dedicated experiment is needed in order to reduce these systematics \rightarrow AIDA-Innova project (HPTPC with hybrid readout) started in Bari since April 2021 Vessel design will be done by our CAD group here in Bari

Far detector: Super-Kamiokande

Super-K (off-axis)

- Water Cherenkov (22.5 kt fiducial volume, > 11k PMT, ~40 m x 40 m)
- Excellent μ/e separation and π⁰ detection (2 e-like rings)
- $\Delta E/E \sim 10\%$ for Quasi-Elastic (QE) events

$\nu_l + n \to l^- + p \qquad \bar{\nu}_l + p \to l^+ + n$

SIGNALS

SK MC

SK MC

SK MC

μ

 e/γ

multi-ring

Single μ/e like ring
Erec by energy/direction of lepton, 2-body kinematics

$\nu_e + p \to e^- + \pi^+ + p$

Single e like ring
 E_{rec} by energy/direction of lepton, 2-body kinematics with a Δ⁺⁺ recoil
 One decay electron

BACKGROUNDS

 $\nu_l + (n/p) \to l^- + (n/p) + \pi$

 $\nu_l + (n/p) \to \nu_l + (n/p) + \pi^0$

- $\stackrel{\bullet}{=} \pi^0 \rightarrow \gamma \gamma$: ring counting, 2-ring reconstruction
 - $\frac{1}{2}$ γ misidentified as e from v_e CCQE
 - powerful rejection capabilities reduce this by O(10²)
- Ring counting, decay electron cut to reject non-CCQE interactions

ND280

Istituto Naziona

14

First large TPC with MPGD

TPC assembling

TPC design with advanced detectors (MPGD)

INFN Bari activities in T2K

- TPC design, assembling, calibration, maintenance and operation
- Leading role on TPCs (Emilio Radicioni)
- ${f \hat{s}}$ Leading in $ar{
 u}_{\mu}$ analysis @ ND280
- Since 2012 our group is leading the T2K activities in Italy and in the executive committee of the T2K experiment (Gabriella Catanesi)

The T2K Near Detector upgrade

- · Keep the electromagnetic calorimeter
- Horizontal active target detector: SuperFGD
- Two High-Angle TPCs

- Current
 Upgrade

 Target Mass (tons)
 2.2
 4.3
- Time-of-Flight detector around new tracker

ND280-upgrade

Our group is heavily involved in the new Horizontal TPC fir the ND280 upgrade

COMSOL simulations:

- Good E filed uniformity up to 10-4
- Non uniformity <10 mm from the field strips</p>
- 2020-2021: CAD design and MOLD produced for the HTPC at the mechanical workshop here in Bari
- 2022-2023: final design and construction of HTPCs, assembling, integration and test at CERN and J-PARC
- Leading role in the ND280-upgrade global reconstruction

Super-Kamiokande and Hyper-Kamiokande

Electronics at INFN

Participation to the SK refurbishment operations in Japan
 Proton decay channel analysis

$$\stackrel{\scriptstyle \odot}{=} \mathbf{p} \rightarrow \mathbf{v} \mathbf{K}^+ \rightarrow \mathbf{v} \mathbf{\pi}^+ \mathbf{\pi}$$

design Multi-PMTs for H-K (INFN+Poliba)

F2K oscillation results

Collected data analyzed

Analysis Model

T2K Run 1-10 Prelimi

SK v_e and \bar{v}_e data and PMNS predictions

Nature paper results (2019)

New results: T2K vs T2K + Reactor

δ_{CP} 3 T2K produces results with only T2K Reactor Constraint data and with the global reactor 2 constraint on θ_{13} . T2K only 90% ----- T2K only 68% T2K only Best Fit **T2K ONLY result is consistent with** 0 reactor constraint to $I\sigma$. T2K+Reactor 90% -1 T2K+Reactor 68% -2 T2K+Reactor Best Fit **Results from here onward are** -3 with REACTOR CONSTRAINT 0.01 0.02 0.03 0.04 0.05 0.06 0.07 **APPLIED.** $sin^2\theta_{13}$

PDG 2019 reactor constraint: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf T2K Run 1-10

New results and comparison with other experiments

T2K phase II with beam and ND280 upgrade (2022)

Solution Agreements signed with NOvA and T2K collaborations and work on joint fits have begun Solution Very different sensitivities, may break apart degeneracies.

- KEK now has budget for collecting **10²² POT** with the second phase of T2K
- Continued rich physics program and improved oscillation sensitivity until Hyper-K and DUNE (expected 5σ sensitivity to δ_{cp})

Conclusions

- T2K has the world leading result for δ_{cp} measurement (we exclude 35% of δ_{cp} values at 3σ)
- $\frac{1}{2}$ Preference for upper octant θ_{23} and Normal Ordering
- Slight preference for non maximal sin² θ_{23} mixing
- Next step T2K-II (ND280 and beam upgrade), long term Hyper-Kamiokande approved by MEXT and under construction
- Final INFN approval is expected by the end of this year
- Lots of exciting work and results to come in the next few years!

Backup

The neutrino beam: flux predictions

Fluxes are predicted from a data-driven simulation → NA61/SHINE experiment measures hadron production cross sections using a thin carbon and a T2K replica target

SK-V with Gd

Analysis strategy

ND280 samples in v and \bar{v} beam mode (post-ND280 fit)

Samples collected at Super-Kamiokande

3000

Reconstructed v energy (MeV)

	$\delta_{\rm CP} = -\pi/2$	$\delta_{\rm CP} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP} = \pi$	Data
FHC $1R\mu$	356.48	355.76	356.44	357.27	318
RHC $1R\mu$	138.34	137.98	138.34	138.73	137
FHC 1Re	97.62	82.44	67.56	82.74	94
RHC 1Re	16.69	18.96	20.90	18.63	16
FHC 1R $\nu_e \text{ CC1}\pi^+$	9.20	8.01	6.51	7.71	14
FHC 1R μ ($E_{\rm rec} < 1.2 {\rm GeV}$)	213.40	213.06	213.36	213.81	191
RHC 1R μ ($E_{\rm rec} < 1.2 {\rm GeV}$)	68.53	68.34	68.53	68.74	71

 $\mathbf{\tilde{\Psi}}$ Data prefer δ_{CP} inducing the largest v- \bar{v} asymmetry: -π/2 **Differences in µ-like events** are consistent with statistical and systematic errors

Oscillation and systematic parameters are shared between the 5 samples Fit simultaneously the 5 samples to maximize the sensitivity to the oscillation parameters

Error reduction with near detector fit on the number of expected events at SK

- v_{μ} event rate uncertainty from 11% to 3% Ŏ
- ve event rate uncertainty from 13% to 5%

What is new in the current analysis

δ_{cp} constraints

CP conserving values (0, π) excluded at 90% C.L. but π not quite at 2 σ

35% of all values excluded at 3σ when marginalised over both hierarchies

Atmospheric parameters

Posterior Probabilities

	$\sin^2 heta_{23} < 0.5$	$\sin^2 heta_{23} > 0.5$	Sum
NO $(\Delta m_{32}^2 > 0)$	0.195	0.613	0.808
IO $(\Delta m^2_{32} > 0)$	0.034	0.158	0.192
Sum	0.229	0.771	1.000

Systematic uncertainties

Pre ND280 constraint

	$\ $ 1R μ			$1\mathrm{R}e$		
Error source (units: $\%$)	FHC	RHC	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	5.1	4.7	4.8	4.7	4.9	2.7
Cross-section (all)	10.1	10.1	11.9	10.3	12.0	10.4
SK+SI+PN	2.9	2.5	3.3	4.4	13.4	1.4
Total	$\parallel 11.1$	11.3	13.0	12.1	18.7	10.7

Post ND280 fit

	1]	$\parallel 1 \mathrm{R} \mu \parallel$				
Error source (units: %)	\parallel FHC	RHC	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux Xsec (ND constr)	$\begin{array}{ c c } 2.9\\ 3.1 \end{array}$	$\begin{array}{c} 2.8\\ 3.0 \end{array}$	$\begin{vmatrix} 2.8 \\ 3.2 \end{vmatrix}$	$2.9 \\ 3.1$	2.8 4.2	$\begin{array}{c} 1.4 \\ 1.5 \end{array}$
Flux+Xsec (ND constr) Xsec (ND unconstrained) SK+SI+PN	$ \begin{array}{ c c c } 2.1 \\ 0.6 \\ 2.1 \\ \end{array} $	$2.3 \\ 2.5 \\ 1.9$	$ \begin{array}{c c} 2.0 \\ 3.0 \\ 3.1 \end{array} $	$2.3 \\ 3.6 \\ 3.9$	$4.1 \\ 2.8 \\ 13.4$	$ \begin{array}{c c} 1.7 \\ 3.8 \\ 1.2 \end{array} $
Total	3.0	4.0	4.7	5.9	14.3	4.3

T2K vs NOvA

Comparison with other experiments

 $\Delta m^2_{32} \ [eV^2/c^4]$

Theory may explain differences between T2K and NOvA on δ_{cp}

NSI bring the estimates of δ_{CP} in agreement

Contours obtained for the best fit of T2K + NOvA: $[\varepsilon_{e\mu} = 0.15, \phi_{e\mu} = 1.38\pi]$

T2K region almost unaltered

NOvA region strongly modified

Theory may explain differences between T2K and NOvA on δ_{cp}

Biprobability plots in the presence of NSI

Theory may explain differences between T2K and NOvA on δ_{cp}

Can the tension be resolved assuming IO?

For IO the best fit of δ_{CP} is the same in T2K and NOvA (left panel).

However, IO gains only $\chi^2_{IO} - \chi^2_{NO} \sim -2$ in T2K + NOvA combination (middle panel). The reason is that T2K disfavors IO (dotted ellipses) (right panel). T2K and NO_VA disappearance channel + Reactors prefer NO ($\chi^2_{IO} - \chi^2_{NO} \sim 4$).

SK atmospheric data (v 2020) prefer NO (χ^2_{IO} - χ^2_{NO} ~ 3).

Therefore, IO seems not to be the favored solution

Hyper-Kamiokande Experiment

OHyper-K detector will be built with 8.4 times larger fiducial mass (190 kiloton) than Super-K and will be instrumented with double-sensitivity PMTs

J-PARC neutrino beam will be upgraded from 0.5 to 1.3 Mega Watt x8 Natural Neutrino Rate and x20 Accelerator Neutrino Rate

New (IWCD) and upgraded (@280m) near detectors to control systematic errors

Hyper-Kamiokande

Broad Science and Discovery Potential

Matter Antimatter asymmetry:

Provide CP conservation exclusion versus δ_{CP}

Large samples provide high statistics

Limited by systematics

^OPin down the δ_{CP} size with a $10^{\circ} - 20^{\circ}$ accuracy

Proton decay: Best capability to

address proton decays Only realistic approach beyond proton lifetime of 10^{35} years

Unique astrophysical capabilities to address: Tension in solar neutrinos Supernova neutrino observation and capability to provide direction at 1°

T2K Collaboration Meeting

Towards T2K phase II: ND280 upgrade

- Goal of the upgrade project: replace the P0D with an **horizontal totally active target** (SuperFGD) and **2 horizontal TPCs** equipped with resistive MicroMegas by 2021
- Increase the current phase-space and reduce the cross-section systematics
- Currently working on R&D and prototypes + simulations

Neutrino cross sections at T2K energies

NEUT 5.4.0

----- NuWro 19.02

GENIE 2.12.10 (x2=16.319)

(χ²=14.634)

 $(\chi^2 = 32.077)$

T2K FHC 11.92 $\times 10^{20}$ POT

T2K RHC 6.29 × 10²⁰ POT

0° <= θ <= 45°

- At T2K energies the favoured interactions are CCQE Other neutrino interactions with production of **pions** in the final state are important as well
 - Discrepancies between different theoretical models
 - x-sec are not completely understood at T2K energies

Latest x-sec measurement at ND280:

- $v_{\rm e}$ and $\bar{v}_{\rm e}$ measurement crucial for CPV
- v_{μ}/\bar{v}_{μ} important for oscillation analysis
- Carbon/Oxigen Crucial for ND280 (CH, O) to SK (H₂O) extrapolation

v_{μ} and \bar{v}_{μ} disappearance results

Constraints on the atmospheric parameters: θ_{23} and Δm_{31}^2

Event selection at Super-Kamiokande

v beam mode

NC

A well understood selection/detector

Two flavour V oscillation in vacuum

Considering two flavor v_{α} and v_{β} the PMNS matrix become a 2 X 2 matrix: $\mathbf{U} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$

Flavour eigenstate are superposition of mass eigenstates:

 $|\nu_{\alpha}\rangle = |\nu_{1}\rangle \cos{(\theta)} + |\nu_{2}\rangle \sin{(\theta)}, \quad \alpha = e, \mu, \tau$

The Schrödinger equation implies that massive neutrino eigenstate evolves in time as plane wave, so:

 $|\nu_{\alpha}(t)\rangle = |\nu_{1}\rangle e^{-iE_{1}t}\cos\left(\theta\right) + |\nu_{2}\rangle e^{-iE_{2}t}\sin\left(\theta\right)$

in the ultrarelativistic neutrinos ($E = |\vec{p}|$, t = L), it is possible to approximate:

 $E_k = \sqrt{\vec{p}^2 + m_k^2} \simeq E + \frac{m_k^2}{2E} \qquad E_k - E_j \simeq \frac{\Delta m_{kj}^2}{2E}, \ \Delta m_{kj}^2 \equiv m_k^2 - m_j^2$

Then the probability that a v_{α} becomes a v_{β} is given by:

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha} \rangle|^2 = \sin^2(2\theta) \sin^2\left(\Delta m^2 \frac{L}{4E}\right)$$

Introducing the speed of light and the Plank costant:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2} 2\theta \times \sin^{2} \left(1.27 \frac{L[km]}{E[GeV]} \Delta m^{2}[eV^{2}]\right)$$

$$\int_{(I)}^{0} \int_{(I)}^{0} \int_{(I)}^$$

