SEARCHES IN THE B-PHYSICS SECTOR

Marco Pappagallo Federica Simone and Adriano Di Florio

Congresso della Sezione INFN e del Dipartimento di Fisica di Bari 21-22 June 2021

Search for physics BSM

21-22 June 2021

THE STANDARD MODEL

The Standard Model of particle physics is a successful theory of three (out of four) fundamental interactions that govern the universe: electromagnetism, the strong force, and the weak force.

It explains how all know matter is made of quarks and leptons which interact by force carrying particles: photons, gluons, W and Z.

Fundamental particles acquire mass through their interactions with the Higgs field

Standard Model of Elementary Particles

BEYOND THE STANDARD MODEL (BSM)

Why are we looking for physics beyond the standard model?

Fundamental questions to be addressed:

- > Why there are three families of quarks and leptons?
- > Why the masses of fundamental particles span several orders of magnitude?
- ➤ How to accommodate gravity into the global quantum picture?

Compelling empirical evidence that the standard model is incomplete!

- Dark matter
- Dark energy
- Non-zero mass of neutrinos
- Baryon asymmetry in the universe

HUNTING PHYSICS BSM

Many candidates for BSM particles:

- > Supersymmetry particles
- Quantum black holes,
- ➢ New boson partners (e.g. Z',...)
- Excited quarks
- Dark matter mediators

How to look for them?

Looking back to the history, often New Physics has showed up first at the intensity frontier rather than at the energy frontier

- $\checkmark\,$ GIM Mechanism used to predict 4th charm quark
- ✓ CP Violation / CKM Matrix used to predict 5th/6th bottom/top quarks
- $\checkmark\,$ Neutral currents found before discovery of Z
- ✓ Top quark mass predicted from electroweak corrections in B physics
- ✓ Higgs mass predicted from electroweak corrections W and Z bosons

DIRECT AND INDIRECT BSM SEARCHES

Direct Searches (Energy Frontier)

➤ Use of high-energy colliders (Tevatron, LHC, ...) to produce new particles

Indirect Searches (Intensity Frontier) < This Talk

Production of a huge numbers of particles (B-factories, LHC, ...) needed to study very rare processes

Which rare decays to look at?

- No SM tree level processes (SM contributions suppressed /absent)
- Small loop or penguin contribution (flavour changing neutral currents) (
- CP Violation
- Lepton flavour / lepton number / lepton universality
- SM prediction should have high precision

EVENT TOPOLOGY AT LHC

Direct Searches (Energy Frontier) → H→ gg and search for X→ gg

21-22 June 2021

CMS AND LHCb DETECTORS

 $|\eta| < 2$

- Mainly high p_T physics (Higgs and Supersymmetry) but large samples of B candidates available
- B-hadrons reconstruction mainly exploits excellent vertex detectors and muon detectors. Excellent vertex and tracking reconstruction capabilities also in high pile-up
- Limited hadron identification, but excellent photon identification

- > 2 < η < 5</p>
- > b quark production $\sigma \sim 0.3$ mb (7 TeV)
- \succ ~ 5 10¹¹ b-anti b pairs /year
- > Excellent vertex resolution to resolve fast oscillation of B_s (~ 40 fs)
- > Good particle ID (π , K, p, γ , μ)
- \blacktriangleright Precise momentum resolution (~0.5%)

21-22 June 2021

R_K: TEST OF LEPTON FLAVOUR UNIVERSALITY

[LHCb-PAPER-2021-004, in preparation]

- ightarrow bightarrowsll decays mediated by flavor changing currents. Sensitive to NP particles
- ➤ In the SM couplings of gauge bosons to leptons are independent of lepton flavour→Branching fractions differ only by phase space (~1)
- > In SM free from QCD uncertainties affecting other observables

21-22 June 2021

F. Simone et al.

- Analysis of 2017 and 2018 data is ongoing, INFN Bari group works on the Heavy Flavor channel
- → INFN Bari group works on $\tau \rightarrow 3\mu$ dedicated trigger implementation for Run3

Hadron Spectroscopy

SPECTROSCOPY IS A HOT TOPIC

Discoveries in spectroscopy are between the most cited papers

Observation of CP violation in the B^0 mesor BaBar Collaboration • Bernard Aubert (Annecy, LAPTH) Published in: <i>Phys.Rev.Lett.</i> 87 (2001) 091801 • e-Pri	n system l et al. (Jul, 2001) nt: hep-ex/0107013 [hep-ex]	72	Observation of $J/\psi p$ Resonances Consistent with Decays LHCb Collaboration • Roel Aaij (CERN) et al. (Jul 13, 2015) Published in: <i>Phys.Rev.Lett.</i> 115 (2015) 072001 • e-Print: 15	h Pentaquark States in $\Lambda^0_b o J/\psi K^- p$ #2 i07.03414 [hep-ex]		
Observation of a narrow meson decaying to BaBar Collaboration • B. Aubert (Annecy, LAPP) et al. (, Published in: Phys.Rev.Lett. 90 (2003) 242001 • e-Pri D ndf 2 links 2 DOI E cite	$D_s^+ \pi^0$ at a mass of 2.32-GeV/c ² Apr, 2003) nt: hep-ex/0304021 [hep-ex]		Test of lepton universality using $B^+ \to K^+ \ell^+ \ell^-$ LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Ju Published in: <i>Phys.Rev.Lett.</i> 113 (2014) 151601 • e-Print: 14 \bigcirc pdf \mathcal{O} DOI \subseteq cite	decays in 25, 2014) i06.6482 [hep-ex] ① 1,086 citations		
Observation of a broad structure in the $\pi^+\pi$ BaBar Collaboration • Bernard Aubert (Annecy, LAPP) • Published in: <i>Phys.Rev.Lett.</i> 95 (2005) 142001 • e-Pri	${\cal F}^-J/\psi$ mass spectrum around 4.26-GeV/c ² et al. (Jun, 2005) nt: hep-ex/0506081 [hep-ex]	2 #4	Measurement of the ratio of branching fractions $E D^{*+}\mu^-\bar{v}_{\mu}$) LHCb Collaboration • Roel Aaij (CERN) et al. (Jun 29, 2015) Published in: <i>Phys.Rev.Lett.</i> 115 (2015) 11, 111803, <i>Phys.Rev.</i> 1506.08614 [hep-ex]	$\mathcal{B}(ar{B}^0 o D^{*+} au^- ar{ u}_ au) / \mathcal{B}(ar{B}^0 o \#4)$		
∐ pdf & links & DOI ⊡ cite	-) 90	01 citations	🖹 pdf 🔗 links 🔗 DOI 🖃 cite	⊕ 868 citations		
	Observation of a narrow charmonium - like state in exclusive B+> K+- pi + pi - J / psi #2 decays Belle Collaboration • SiK, Choj (Gyeongsang Natl. U.) et al. (Sep, 2003) Published in: Phys.Rev.Lett. 91 (2003) 262001 • e-Print: hep-ex/0309032 [hep-ex] Image: Second Second Print: hep-ex/0309032 [hep-ex] Define a links Dol E cite Observation of large CP violation in the neutral B meson system Belle Collaboration • Kazuo Abe (KEK, Tsukuba) et al. (Jul, 2001) Published in: Phys.Rev.Lett. 87 (2001) 091802 • e-Print: hep-ex/0107061 [hep-ex] Image: Optimized Second Physical					
	Study of $e^+e^- ightarrow \pi^+\pi^- J/\psi$ and Observ	d Charmoniumlike State at Belle #5				
	Belle Collaboration • Z.Q. Liu (Beijing, Inst. High Energy Phys.) et al. (Mar 30, 2013) Published in: Phys.Rev.Lett. 110 (2013) 252002, Phys.Rev.Lett. 111 (2013) 019901 (erratum) • e-Print: 1304.0121 [hep-ex]					
	B pdf	datasets				

WHY SPECTROSCOPY DRAWS SO MUCH ATTENTION?

The discovery of new particles provides valuable information on probing the limits of the quark model

- > New states, bound by QCD, do not test the SM per se
- However they do provide insight into a still-to-be-fullyunderstood corner of the SM, namely confinement
- Understanding strong interactions could be important for new high energy phenomena
 - $\checkmark\,$ Higgs boson as a composite state
 - ✓ Strong interactions in a dark sector (e.g. arXiv:1602.00714)
 - ✓ Hadronic dark matter?

50+ NEW HADRONS AT LHC!

Over the past 10 years the LHC has discovered 59 new hadrons: ATLAS (2), CMS (5), LHCb (52)

21-22 June 2021

SEARCH FOR PENTAQUARKS IN $\Sigma_c D^{(*)}$ States

- The LHCb collaboration announced the discovery of the first pentaquark states, coming from a $\Lambda_{\rm b}$ baryon decaying to a $J/\psi {\rm pK}^{-}$ final state. Two of the observed structures occurred very close to the $\Sigma_{\rm c} {\rm D}^{(*)}$ mass thresholds
- Due to the implications of isospin symmetry, it is expected that there will exist a multiplet corresponding to the pentaquarks shown, with differing total charge.

Particle 1	Particle 2	Pentaquark			
Σ _c ⁺⁺	$\overline{D^0}$	P _c ⁺⁺			
Σ_{c}^{0}	$\overline{D^0}$	P _c ⁰			
Σ _c ⁺⁺	D	P _c +			
Σ_{c}^{0}	D	P _c ⁻			
Σ_{c}^{++}	D*-	P _c ⁺			
Σ_c^0	D*-	P _c ⁻			

Table 1: Different possible combinations of Σ_c baryons with D mesons to produce the isospin multiplet.

21-22 June 2021

THE PUZZLE OF THE EXCITED D_s MESONS

A. Palano, M. De Serio, A. Pastore, M. Martinelli

STUDY OF $B_{(S)}^{0} \rightarrow D^{*}(2010)^{-}K^{0}_{S} \pi^{+}$ DECAY CHANNEL

The production of D_s** in B_(s)⁰ decays can help understanding the nature of these states

Dalitz analyses involving DK final states have been also performed in B_s⁰ decays:

Excited charm-strange states above the $D^*_{s2}(2573)$ seen in D(*)K spectra in collisions BaBar e⁺e⁻ and LHCb

State	Mass	Width	Comment				
BaBar							
$D_{s1}^{*}(2700)^{-}$	$2710 \pm 2{}^{+12}_{-7}$	$149 \pm 7 {+39 \atop -52}$	Seen in DK and D^*K				
$D_{sJ}^{*}(2860)^{-}$	$2862 \pm 2 {}^{+5}_{-2}$	$48 \pm 3 \pm 6$	Seen in DK and D^*K				
$D_{sJ}(3040)^{-}$	$3044 \pm 8 {+30 \atop -5}$	$239 \pm 35 \ ^{+46}_{-42}$	Seen in D^*K only				
LHCb							
$D_{s1}^{*}(2700)^{-}$	$2709.2 \pm 1.9 \pm 4.5$	$115.8 \pm 7.3 \pm 12.1$	Seen in DK and D^*K				
$D_{sJ}^{*}(2860)^{-}$	$2866.1 \pm 1.0 \pm 6.3$	$69.9 \pm 3.2 \pm 6.6$	Seen in DK and D^*K				
$D_{s1}^{*}(2860)^{-}$	2859 ± 12	159 ± 23	From $B_s^0 \to \overline{D^0} K^- \pi^+$				
$D_{s3}^{*}(2860)^{-}$	2860.5 ± 2.6	53 ± 7	From $B_s^0 \to \overline{D^0} K^- \pi^+$				

Now investigating D*K final states in $B_{(s)}^{0}$ decays ...

21-22 June 2021

A. Palano, M. De Serio, A. Pastore, M. Martinelli

WHAT WE KNOW ABOUT $D_{s1}(2460)^+$

F. Debernardis, A. Pastore, M. Pappagallo

SEARCH FOR $D_{S1} \rightarrow D_S \mu\mu$ DECAYS

Search for Dalitz decays of $D_{s1}(2460)$ by using the CF decay mode: $D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+} (5.45 \pm 0.17)\%$

DIQUARK: A BUILDING BLOCK OF HADRONS?

- → The heavy quark effective theories (HQET) predict the masses of the heavy mesons/baryons by a perturbative expansion of $\Lambda_{QCD}/m_Q \sim 0$
- Precise measurements of the excited heavy meson properties are a sensitive test of the validity of HQET
- The observation of new baryons and measurements of their properties provide information about the role played by diquarks in baryons, which can also help to tune tetraquark and pentaquark models.

P-WAVE STATES

Baryons made of 3 quarks (fermions)

Wave function must be antisymmetric under interchange of any two equal-mass quarks

 $|qqq\rangle_A = |\text{color}\rangle_A \times |\text{space, spin, flavor}\rangle_S$

- $\mathbf{\overline{3}_{C}}(\mathbf{A}) \xrightarrow{l_{\rho}=1}_{l_{\lambda}=0} (\mathbf{S}) \xrightarrow{s_{l}=0}_{l_{\lambda}=1} (\mathbf{S}) \xrightarrow{s_{l}=0}_{l_{\lambda}=1} (\mathbf{S}) \xrightarrow{s_{l}=1}_{l_{\lambda}=1} (\mathbf{S}) \xrightarrow{s_{l}=1} (\mathbf{S}) \xrightarrow{s_{l}=1}_{l_{\lambda}=1}$

[Phys. Rev. D91 (2015) 054034]

7 excited L = 1 $\Omega_c \rightarrow 5 \lambda$ -mode excited states

M. Pappagallo

21-22 June 2021

qq

Credit: M. Pennington AIP Conf.Proc. 1432 (2012) 176-184

P-WAVE STATES

Baryons made of 3 quarks (fermions)

Wave function must be antisymmetric under interchange of any two equal-mass quarks

M. Pappagallo

21-22 June 2021

A. Palano, M. Pappagallo

FIVE NEW EXCITED $\Omega^0_{\ c}$ STATES!

[LHCb: PRL 118 (2017) 182001]

- > Observation of 5 new excited Ω_c states! Two of them extremely narrow > First time so many states observed in a single mass spectrum
- Comprehensive explanation of all peaks challenges our current

knowledge

Are they orbitally excited (L=1) states? Or radiatally excitations? Or...

TABLE II: Spin-parity (J^p) numbers of the newly observed Ω_c states suggested in various works.

State	[19]	[20]	[21]	[23]	[29]	[25]	[27]	[28]	[32]	[26]	This work
$\Omega_c(3000)$		1/2-	1/2- (3/2-)	1/2-	1/2-	1/2-	1/2-	1/2 ⁺ or 3/2 ⁺	1/2-		1/2-
$\Omega_c(3050)$		1/2-	1/2- (3/2-)	1/2-	5/2-	3/2-	1/2-	5/2 ⁺ or 7/2 ⁺	3/2-		3/2-
$\Omega_c(3066)$	$1/2^{+}$	$1/2^+$ or $1/2^-$	$3/2^{-}(5/2^{-})$	3/2-	3/2-	5/2-	3/2-	3/2-	$1/2^{+}$		3/2-
$\Omega_c(3090)$			3/2- (1/2+)	3/2-	1/2-	1/2+	3/2-	5/2-	1/2+		5/2-
$\Omega_{c}(3119)$	3/2+	3/2+	5/2- (3/2+)	5/2-	3/2-	3/2+	5/2-	5/2 ⁺ or 7/2 ⁺	3/2+	$1/2^{-}$	1/2 ⁺ or 3/2 ⁺

Phys. Rev. D95 (2017) 116010

... are they pentaquarks?

M. Pappagallo

21-22 June 2021

S. Mitchell, M. Pappagallo, M. Mikhasenko

FIRST EXCLUSIVE OBSERVATION OF Ω_c^{**0} in $\Omega_b^- \rightarrow \Xi_c^+ K^- \Pi^-$ Decays

[LHCb-PAPER-2021-012, in preparation]

- Strict exclusivity cut \Rightarrow No feed down!
- Same four peaks (no clear fifth)
- + the threshold structure

COMBINED SPIN TEST

[LHCb-PAPER-2021-012, in preparation]

A popular J^P assignment: the narrow states are λ -modes in the natural order 1/2⁻, 1/2⁻, 3/2⁻, 3/2⁻, 5/2⁻ [Karliner:2017kfm, Padmanath:2017lng, Wang:2017zjw]

$\boldsymbol{\Xi}_{c}$ SPECTROSCOPY

AMPLITUDE ANALYSIS OF $B^+ \rightarrow (K^0_S K \pi) K^+$

 \Box In this analysis we study the $K_S^0 K \pi$ system in the B^+ decay

$$B^+ \to (K^0_S K \pi) K^+$$

 \square We have two different final states (charge conjugation is implied).

 $B^+ \to K^0_S K^- \pi^+ K^+, \qquad B^+ \to K^0_S K^+ \pi^- K^+$

 $\Box B^+ \to K^0_S K^- \pi^+ K^+$ (79565 events) and $B^+ \to K^0_S K^+ \pi^- K^+$ (76180 events, two combinations per event).

AMPLITUDE ANALYSIS OF $B^+ \rightarrow (K^0_S K \pi) K^+$

Plan of the work

- Precise measurements of the charmonium resonances parameters.
- Measurement of the partial $B^+ \to (c\bar{c})K^+$ branching fractions.
- Dalitz plot analysis of the $\eta_c \to K^0_S K \pi$ decay.
- Amplitude analysis of the $K_S^0 K \pi$ system in the threshold region.

21-22 June 2021

A. Pompili & A. Di Florio et al.

Λ_b^0 EXCITED STATES

 Λ_b^0 excited states in CMS: $\Lambda_b^0 \to J/\psi \Lambda$ and $\Lambda_b^0 \to \psi(2S)\Lambda$

 $M(\Lambda_b(5912)^0) = [5912.32 \pm 0.12(stat) \pm 0.01(syst) \pm 0.17(m_{PDG}(\Lambda_b^0))] \text{MeV}$ $M(\Lambda_b(5920)^0) = [5920.16 \pm 0.07(stat) \pm 0.01(syst) \pm 0.17(m_{PDG}(\Lambda_b^0))] \text{MeV}$

 $M(\Lambda_b(6146)^0) = [6146.5 \pm 1.9(stat) \pm 0.8(syst) \pm 0.2(m_{PDG}(\Lambda_b^0))] \text{MeV}$ $M(\Lambda_b(6152)^0) = [6152.7 \pm 1.1(stat) \pm 0.4(syst) \pm 0.2(m_{PDG}(\Lambda_b^0))] \text{MeV}$

21-22 June 2021

$\Xi_{\rm b}(6100)^{-1}$

• Significance > 6σ : first observation of $\mathcal{Z}_{b}(6100)^{-1}$

• Compatible with the orbitally excited Ξ_b^- with $J^P = \frac{3}{2}^-$ & analogue of $\Xi_c(2815)$

21-22 June 2021

Prospects and Future Plans

SHORT TERM

- > Though no single measurement deviates more than 5σ from the SM, a global coherent picture starts to emerge
- ➤ Many more measurements are in the pipeline: (e.g. R_K vs R_{K*}, R_φ)

Flavour Anomalies Workshop on 20 Oct 2021 (Organizing Committee: M. Pappagallo, A. Pompili et al.)

LHC experiments have contributed largely to the spectroscopy of the heavy hadrons

➤ Many more on the way! Stay tuned!

https://www.nikhef.nl/~pkoppenb/anomalies.htm

 R_K [1.1, 6]

 R_{pK} [0.1, 6] · P'_5 [2.5, 4] ·

 P'_5 [4, 6]

 R_{K^*} [0.045, 1.1] - R_{K^*} [1.1, 6] -

 $\mathcal{B}(B^0_* \to \phi \mu^+ \mu^-)$ [1.1, 6]

 $\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^ \mathcal{B}(B^0 \rightarrow \mu^+ \mu^-$

> Muon g - 2 R(D) $R(D^*)$ $R(J/\psi)$

 $\mathcal{B}(B^+ \rightarrow \tau^+ \nu)$ Δm_e

 Δm_d

LONG TERM: LHC EXPERIMENTS ARE GOING UNDER UPGRADES

21-22 June 2021

Back-up slides

HOW TO DO SPECTROSCOPY?

Prompt Production: (e.g. $pp \rightarrow D_s^{**}(\rightarrow D^0K) + X$)

✓ Large cross sections
 X Large combinatorial background
 X Hard to disentangle broad structures
 X Difficult to assess spin
 X Presence of "reflections"/"feed-downs"

b-hadron decays (e.g. $B_s \rightarrow D_s^{**}(\rightarrow D^0K)\pi$)

- ✓ Small background
- ✓ Access to the phase of the amplitude and spin-parity
- X Limited cross sections
- X High spin resonances suppressed
- X Presence of "shadows"

THE PUZZLE OF THE SCALAR MESONS

The inverse mass hierarchy of the scalar mesons

 $J^{P} = 0^{+}$

GROUND STATES

Baryons made of 3 quarks (fermions)

▶ Wave function must be antisymmetric under interchange of any two equal-mass quarks

N.B. Ω_c^0 doesn't belong to the same multiplet of the well famous Ω^-

21-22 June 2021

ANGULAR ANALYSIS OF $\Omega_{b}^{-} \rightarrow \Omega_{c}^{**0} (\rightarrow \Xi_{c}^{+} K^{-}) \Pi^{-}$

[LHCb-PAPER-2021-012, in preparation]

- Spin of Ω_b^- is 1/2
- Ω_c^{**0} cannot have spin projection > 1/2
- \Rightarrow non-trivial angular dependence for J = 3/2, J = 5/2.
- Noticible inefficiency at $\cos \theta = 1$ (soft K^-).

3.6
$$\sigma$$
: $J(\Omega_c(3065)^0)! = 1/2$
2.2 σ : $J(\Omega_c(3050)^0)! = 1/2$

S. Mitchell, M. Pappagallo, M. Mikhasenko

THE THRESHOLD STRUCTURE

[LHCb-PAPER-2021-012, in preparation]

• Explained in the prompt analysis by the partially reconstructed $\Omega_c(3065)^+ \rightarrow \Xi_c^{\prime+} K^-$ with anomalously large coupling.

- Exclusive analysis: no feed down is possible
- Other non-physical sources are excluded
- Singinifance in the nominal fit is 5.3σ,
 4.3σ including systematics
- No model sensitivity due to the low statistics

Further investigation in needed!

LHC experiments going to Upgrade

21-22 June 2021

LHCb GOING TO UPGRADE

Upgrade I (Approved)

- Main limitation that prevents exploiting higher luminosity with the present detector is the Level-0 (hardware) trigger
 - ✓ Level-0 output rate < 1 MHz (readout rate) requires raising thresholds
- Hadron final states will benefit from removing L0
- ▶ Running at 2x10³³ cm⁻² s⁻¹ with full software trigger, running at 40 MHz

Upgrade II (Under approval)

To be installed in Long Shutdown 4 of the LHC:

- Subsystems redesigned to operate at a luminosity of 1-2 x 10³⁴ cm⁻² s⁻¹
- > Integrated luminosity of > 300 fb^{-1}
- \blacktriangleright Extension of the experiment's capabilities to select $\pi^0,~\eta$ and low-momentum tracks

21-22 June 2021

CMS towards Run 3

The $\tau \rightarrow 3\mu$ search in Run 3:

- Study ongoing to optimize the dedicated trigger path
- Goal: lowering the pT threshold to enhance the signal acceptance while keeping • similar rates as 2018. Enlarge eta acceptance
- New tools in Run 3: •
 - Level-1 trigger: implementation of a 3-µ invariant mass object
 - CSC-GEM segment (1.6 < |eta| < 2.1)
 - improved momentum resolution at L1 trigger
 - Extended eta coverage
- INFN Bari group works on $\tau \rightarrow 3\mu$ dedicated trigger implementation for Run3

21-22 June 2021

HL-LHC

LHC / HL-LHC Plan

HL-LHC - sqrt(s)=14 TeV - Pile-up = 200 - Lint = 3000 fb-1

To extend the sensitivity for new physics searches, a major upgrade of the LHC has been decided, the **High Luminosity LHC** starting from 2026.