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Complex Systems

Stephen Hawking

January 23, 2000`



✓ Complex systems have properties that are neither
completely random nor completely regular, instead
showing nontrivial characteristics that are indicative of
a more elaborate, or complex, organization.

✓ An interdisciplinary field of network science has
formed around the use of general analytic methods to
model complex networks, and to explore the scope of
common or near-universal principles of network
organization, function, growth, and evolution.
Principal among these general methods is graph
theory.

Graphs as models of complex systems



In humans, neural anatomy is 
organized over six orders of 
magnitude, from the level of 
individual neurons and 
synapses (<1 μm), through 
populations of neurons such as 
cortical columns and 
cytoarchitectonic regions (1 
cm), to large-scale divisions 
such as lobes, systems, and 
hemispheres (10 cm).

Multiscale organization of the brain 



Multiscale organization of the brain 

The dynamics unfolding on 
these structures evolve over 
a similar range of temporal 
scales, spanning frequencies 
between 0.05 and 500 Hz .
This multiscale organization 
means that there is no 
single, privileged scale for
the analysis of brain 
networks.



Methods for studying the organization of the brain 

Danielle S Bassett & Olaf Sporns, 20 (3) Nature 2017



Nodes in brain networks

✓ Noninvasive imaging techniques, such as MRI, EEG, and MEG, offer a means for
mapping connectivity across the entire brain, in vivo, in model species and
humans alike.

✓ The advantages of these methods include their clinical safety and tolerability,
their coverage of the entire brain (particularly MRI), and their flexibility in
allowing studies of whole-brain connectivity across the lifespan and in relation
to a wide range of human brain disorders.

✓ A typical T1-weighted anatomical MRI has a voxel resolution of about 1 mm x1
mm x 1 mm, which contains an estimated 20.000-30.000 neurons and billions of
synapses.



Diffusion MRI



Functional MRI



Graph modeling

The connectivity matrix offers a compact description of the pairwise connectivity between
all nodes of a network. To build a connectivity matrix, C, for a brain network comprising N
nodes, we start by constructing a two-dimensional array, called a square matrix, which
comprises N rows and N columns.

Diagonal and Off-DiagonalDirectionality Connectivity Weights



Graph metrics: degree distribution

The Erdos-Renyi graph is a classic example of a single-scale 
network. The degree distribution of this network follows a 
binomial distribution.

Barabasi and Albert (1999) showed that the degree 
distribution of many real-world networks is better 
approximated by a power law with the form:



Graph metrics: degree distribution
Nervous systems are physically embedded, and both spatial and metabolic constraints limit 
the number of connections that any single neural element can possess.
In different studies with several imaging modalities, was found an exponentially truncated 
power-law degree distribution of the form:



Clustering coefficient

Stephen Hawking

January 23, 2000`

The clustering coefficient captures the degree to which the neighbors of a 
given node link to each other.

what fraction of your neighbors are connected?

Node i with degree ki

ei the number of links between the ki neighbors of node i.

Ci in [0,1]

Watts & Strogatz, Nature 1998.



Path and distance

Stephen Hawking

January 23, 2000`

A path between nodes i0 and in is an ordered list of n links :

The length of this path is n. The path shown in orange in (a) follows the route 1→2→5→7→4→6, hence its length is n = 5.

  

Pn = {(i0 ,i1),(i1,i2),(i2 ,i3 ),...,(in-1,in)}

The shortest paths between nodes 1 and 7, or the distance d17, correspond to the path with the fewest number of links 
that connect nodes 1 to 7. The shortest path is often called the distance between nodes i and j, and is denoted by dij, or 
simply d. We can have multiple shortest paths of the same length d between a pair of nodes.



Graph metrics: modularity



Artificial Intelligence meets Complexity

Extract information, patterns and relationships that can be used to make decisions, they have different 
approaches and functionalities.
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Multidimensional neuroimaging processing in ReCaS



Case study 1 – DTI connectivity and AD

COGNITION IMAGING

Several tests provide information about the
neuropsychological conditions of patients
and measure the severity of the most
important symptoms of AD:
- Alzheimer’s Disease Assessment Scale

cognitive total score (ADAS);
- Mini Mental State Exam score (MMSE);
- Rey Auditory Verbal Learning Test

(RAVLT) which measures cognitive
impairment, attention, language and
visuo-spatial functions and memory
deficits.

• The AD decline is associated to disrupted connectivity
among brain regions caused by degeneration of white
matter (WM).

• Diffusion weighted imaging (DWI) has become the most
popular technique to investigate the physical connection
among WM fibers, i.e, the structural connectivity.

• DWI and tractography algorithms are combined to define
diffusion tensor imaging (DTI) structural networks that
could be analyzed through complex network models.

• Connectivity patterns could be investigated by using
several topological network metrics describing the roles
of the regions, the structure of paths connecting them
and their importance for the network integrity.



Case study 1 – DTI connectivity and AD

COGNITION IMAGING

A. Lombardi, et al. "Association between Structural Connectivity and Generalized Cognitive 

Spectrum in Alzheimer’s Disease." Brain Sciences 10.11 (2020): 879.



Case study 1 – DTI connectivity and AD
ML FRAMEWORK

1. identify a generalized index that effectively summarizes the cognitive spectrum of the population under investigation;
2. find significant associations between the identified index and the features derived from the structural connectivity of the 
subjects;
3. identify the most important features in order to understand the strongest biological associations between the structural 
connectivity and cognitive spectrum.



Case study 1 – DTI connectivity and AD
Correlation between the actual values and the values predicted by Lasso algorithm of the
generalized cognitive score and each of the ten clinical indexes by using both connectivity weights
(matrix X1) and local graph metrics (matrix X2) as features.



Case study 1 – DTI connectivity and AD
The relative frequency of the selected features and their average weights were evaluated
across the validation rounds to rank the importance of each feature for the most performing matrix 
X2.



Case study 2 – Brain age prediction
The last few decades have seen significant advances in neuroimaging methodologies and machine 
learning (ML) techniques focused on identifying structural and functional features of the brain 
associated with the age. 
• Age prediction is typically performed using a multivariate set of features derived from one or 

multiple imaging modalities. A dataset is then specified by including the characteristics of 
different subjects and their chronological ages. 

• The dataset is employed to train one or more supervised machine learning algorithms which 
attempt to predict a given subject’s brain age by using the brain imaging features while 
minimizing the difference from the true age and preventing overfitting. 

To evaluate the regression performance, two different metrics were employed:



Case study 2 – Brain age prediction
Four different regression models support vector regression (SVR), random forest (RF), Lasso and deep 
neural networks (DNN) were evaluated to predict brain ages of N subjects                  based on the 
matrix of predicting variables 



Case study 2 – Brain age prediction
DNN models outperform the other regression algorithms

A. Lombardi, et al. "Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results 

From Predictive Analytic Competition 2019." Frontiers in Psychiatry 11 (2020): 1613.



Case study 2 – Brain age prediction
DNN models perform better even on age groups with fewer samples.



ML creates functions to 
combine features in 
sophisticated ways.

It is difficult to 
disaggregated the final
predictions to single 
feature contribution and 
untangle interaction 
among features!

Accuracy VS Interpretability of the ML models



Towards Explainability of DNN for age prediction

• Several works have shown that DL models improve performance and reduce model bias
compared to other less complex ML methods, however, current DL approaches applied to
neuroimaging are black boxes as they typically do not provide an in-depth understanding
of the underlying mechanisms and how they contributed to the outcome.

• Explainable Artificial Intelligence (XAI) comprises many techniques that combines ML
algorithms with explanatory techniques to develop explainable solutions that have been
extensively applied in different domains.

• There has been little analysis of the reliability and robustness of the explanation
methods in computational neuroscience, making their utility for critical applications
unclear.

A. Lombardi, et al. "Explainable Deep Learning for Personalized Age Prediction With Brain 

Morphology." Frontiers in neuroscience 15 (2021).



XAI for personalized brain age prediction

• Explainable DNN framework to predict
the age of a healthy cohort of subjects
from ABIDE I database by using
morphological features extracted from
their MRI scans.

• Two local XAI methods to explain the
outcomes of the DNN models and
determine the contribution of each
brain morphological descriptor to the
final predicted age of each subject.

• Complete architecture to compare the
two methods, determine their
reliability and to extract information
on the importance of the most age-
related morphological descriptors in
order to encourage the use of DL
models in clinical settings.



How local XAI methods work?

SHAP and LIME are local model-agnostic as they explain predictions at individual level
regardless the selected models. Basically, the two methods learn an interpretable linear
model around each test instance and estimate feature importance at local level.
• Dataset

• the generic pre-trained model f returns a prediction f(xi) based on a single input sample xi;

• SHAP and LIME aim at finding a linear model g to explain f by using a simplified inputs x′ 
that map the original inputs through a mapping function x=hx(x′)x=hx(x′) trying to ensure
g(z′)≈f(hx(z′))g(z′)≈f(hx(z′)) whenever z′ ≈ x′

Dataset D = [(x1, y1), (x2, y2), ..., (xT, yT)], where xi is the feature vector for the sample i and yi

the corresponding age;



Accuracy of the DNN models

MAE values are related
to age range within
each site: the higher
the age range, the
higher the average
MAE within a site.



Explainability: intra subject consistency

The intra-consistency coefficients
of the XAI scores provide indices of
consistency of the feature
importance as the training set
varies from round to round.
The LIME scores show consistently
lower intra-consistency values
(lower than 0.4 for all the sites)
than those exhibited by the SHAP
scores (greater than 0.5 for all the
sites).



Explainability of brain age: the XAI algorithm matters!

Results about the correlation analysis between the XAI 
scores and the age of the subjects:

• The distribution of coefficient values between the 
SHAP scores of the morphological features and the age 
of the subjects is significantly higher than the 
distribution of coefficient values between the LIME 
scores and the age.

• A higher number of features statistically related to 
the age resulted from SHAP values than from the LIME 
values as presented in Figures A and B.

• The sets of age-related features for the two XAI 
methods exhibit a remarkably low overlap.



Conclusions

• Biological complexity can be explored using a wide variety of topological indices that
provide quantitative and detailed information at different scales.

• It is often difficult to identify quantitative indices to be used for a specific clinical
problem. The different descriptions of a complex system are used as features for one or
more ML/DL algorithms, which are then applied to optimize the accuracy of the
classification/regression problem.

• The accuracy of the algorithms is not enough: identifying the set of descriptors of the
physical system related to the classification and regression results is also very crucial in
biological contexts.

• Explainable Artificial Intelligence (XAI) can provide clear and interpretable explanations 
about the links between features and outcomes.
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Case study 1 – DTI connectivity and AD

ASSOCIATION BETWEEN CONNECTIVITY AND GENERALIZED COGNITIVE SCORES

• Lasso (Least Absolute Shrinkage and Selection Operator) to find significant associations between 
the connectivity features and the proposed generalized cognitive score. 

• Lasso is a regularization method that was introduced to solve both overfitting and multicollinearity 
problems in ordinary least square regression. 

• This approach involves a penalty term that controls the complexity of the model by introducing 
sparsity. This term penalizes the coefficients of the least significant variables shrinking some of 
them to zero so only the most important features are retained.

• The outcome is a subset of the predictors that contribute mostly to the regression model, so the 
algorithm is also used as embedded feature selection method. The goal of this method is to 
minimize the residual sum of squares (RSS) to find the coefficients of the predictors:


