

Update on jet reconstruction and calorimeter simulation

Lorenzo Sestini, Alessio Gianelle, Laura Buonincontri, Ivano Sarra, Nadia Pastrone

Introduction

- Many updates prepared for the APS April meeting 2021.
- I am going to review the most relevant aspects, adding plots and studies not presented at APS.
- We can discuss about plans for the next future.

Generated samples

• We have generated **inclusive b, c and light dijet samples** with Pythia 8 in six $p_T(b_1/c_1/l_1)+p_T(b_2/c_2/l_2)$ bins: [0,40], [40,80], [80,120], [120,160], [160,200], [200, ∞] GeV.

• We have simulated 30 BIB events at \sqrt{s} = 1.5 TeV, to be used in turn in the signal+BIB overlay.

• In these slides: results on 1500 bb-dijet+BIB events in the bin [120,160] GeV.

Jet reconstruction in calorimeters

- BIB subtraction in ECAL barrel applied. ECAL endcaps are not used. HCAL barrel and endcaps are employed without any subtraction.
- ECAL and HCAL clusters are reconstructed with PandoraPFA.
- Calorimeters jets are clustered with the kt algorithm, radius R=0.5.

Full jet reconstruction algorithm

- In order to reduce the tracking combinatorial problem, a regional tracking strategy is employed.
- Motivated by the Physics, it is also useful to save a lot of CPU time.

07/05/2021

Lorenzo Sestini

5 /10

Jet reconstruction performance

 Good reconstruction efficiency at high transverse momentum (p_T) and low rapidities (η).

- A jet energy correction dependent from η and p_T is applied.
- 15% p_T resolution at high p_T . The p_T resolution worsen in the region near the nozzles.

07/05/2021 Lorenzo Sestini 6 /10

Fake jet rate

- Fake jets are unphysical, produced by the BIB combinatorial.
- They have low p_T , but most of them are located in the central region.
- Jet identification cuts should be studied in order to remove them, it is probably necessary to exploit the jet substructure.

Secondary vertex reconstruction

- Secondary vertex reconstruction: tracks selected by the regional tracking are used.
- b-tagging by requiring the SV inside the cone.
- Mis-ID obtained in the light jet+BIB sample.
- Decent results even if BIB is present!
- Not optimized yet, a standard set of cuts is applied.

CRYLIN calorimeter

- The idea is to test new calorimeter technologies in the Muon Collider simulation.
- CRYLIN (CRYstal calorimeter with Longitudinal Information): idea by Ivano, specific design for Muon
 Collider ECAL.
- Cherenkov light, semi-homogeneous calorimeter: PbF₂ + SiPM read-out.
- PbF₂ has good light yield (3 pe/MeV), fast signal (300 ps for muons, 50 ps for pions), radiation hard, relatively cheap.

Each cell is formed by 5 layers of: 4 cm of PbF₂ (BIB absorber)+ SiPM+ electronics

- Prototype currently tested by Ivano's group at LNF.
- DD4Hep implementation in Muon Collider simulation ongoing (for ECAL).

Future plans

- 1500 events of bb-dijets + BIB have been studied. cc-dijets and light jets are also available.
- The idea is to put these samples (including all the collections: tracks, clusters, SV etc.) in a place accessible by everyone -> we are thinking how to do it.
- For sure there are many rooms of improvements, at all stages.
- Since now we have a stable reconstruction configuration, we can start testing the performance of new calorimeter technologies: the implementation of CRYLIN in the simulation package is ongoing.

Thanks for your attention!

Backup

Beam induced background in calorimeters

Energy deposition in calorimeters per bunch crossing

- **BIB is diffused in the calorimeters**: at the ECAL barrel surface the flux is 300 particles/cm², most of them are photons with <E>=1.7 MeV.
- BIB occupancy is lower in HCAL with respect to ECAL.

Beam induced background in calorimeters

- BIB is out-of-time with respect to bunch-crossing.
- An acquisition time window of **[-0.25,+0.25] ns** is assumed for the following studies.

- The released energy distribution of signal showers in the longitudinal direction shows different features with respect to BIB.
- It is clear that timing and longitudinal measurements play a key role in the BIB suppression.

07/05/2021 Lorenzo Sestini 14/10

BIB subtraction in ECAL for jet reconstruction

- ECAL is divided in (θ,d) regions: θ angle wrt z-axis, d distance wrt beam axis.
- In each region the average BIB hit energy E_{BIB} and standard deviation σ_{BIB} is determined.
- In signal+BIB reconstruction an ECAL hit is accepted if E_{HIT} > E_{BIB} +2 σ_{BIB} .
- The energy of the accepted hit is corrected: $E_{HIT} \rightarrow E_{HIT} E_{BIB}$.

PandoraPFA

M. A. Thomson Nucl.Instrum.Meth.A611:25-40,2009

Missing energy

- The calorimeter-jet configuration has been considered for studies on the missing energy measurement.
- $\Delta H^{miss} = H^{miss}_{BIB} H^{miss}_{noBIB} \rightarrow calculated in the transverse and longitudinal plane.$
- Preliminary studies show that the measurement in the transverse plane is more precise.

Design a detector at $\sqrt{s} = 1.5$ TeV

Vertex Detector (VXD)

- 4 double-sensor barrel layers $25x25\mu$ m2
- 4+4 double-sensor disks

Inner Tracker (IT)

- 3 barrel layers $50x50\mu m2$
- 7+7 disks '

Outer Tracker(OT)

- 3 barrel layers 50x50µm2
- 4+4 disks

Electromagnetic Calorimeter (ECAL)

 40 layers W absorber and silicon pad sensors, 5x5 mm2

Hadron Calorimeter (HCAL)

• 60 layers steel absorber & plastic scintillating tiles, 30x30 mm2

Check Simone's talk tomorrow for a full overview of the Muon Collider detector. For simulation software check Nazar's talk.