Numerical study of the microscopic structure of jammed systems

from inferring their dynamics to finite size scaling

Rafael Díaz Hernández Rojas

Horizon 2020 European Union funding for Research & Innovation Prof. Federico Ricci Tersenghi Prof. Giorgio Parisi

OUTLINE

1. Introduction: Why should we care about jammed systems?

2. Producing jammed packings using *Linear Programming*

- **3. Inferring the** *particle-wise dynamics NEAR* **the jamming point**
- **4. Finite size scaling of microstructural criticality** *@jamming*

What is Jamming?

[van Hecke, *J. Phys.: Cond. Matter* **(2010)**]

[Vinaigrette attempt; RDHR *unpublished recipe* **(2020)**]

In a *jammed state* all the degrees of freedom are completely frozen (*i.e.* blocked) due to geometric frustration.

[Donev, *PhD Thesis* (Princeton) **(2006)**] [Torquato and Stillinger, *Rev. Mod. Phys.*, 82, 3 **(2010)**]

Glass and Jamming transitions

[van Hecke, *J. Phys.: Cond. Matter* **(2010)**]

Mean Field picture of glasses near jamming

Jamming: same phenomena different systems

Same universality class as spheres-based models

Iterative Linear Programming Algorithm

Iterative LP Algorithm to reach jamming

Jamming as a *constrained optimization problem*: Rearrange particles in order to maximise the system density, **without any overlap between particles.**

Inspired by [Donev *et al. J. Comp. Phys.* **(2004)**] and [Torquato and Jiao, *PRE* **(2010)**]

$$
\mathbf{r}_i\rightarrow \mathbf{r}_i+\mathbf{\Delta}_i\,\,,\quad \sigma_i\rightarrow \sqrt{\Gamma}\sigma
$$

A version used for polydisperse spheres was introduced in [Artiaco, Baldan, Parisi *PRE,* **(2020)**]

Iterative LP Algorithm to reach jamming

Optimal solution: **saturates** linear constraints

Generate new instance

of LP with

- Updated sizes
- Updated positions
- **● Repeat!**

$$
\quad \text{Until...} \quad \Gamma^\star = 1 \,, \quad \boldsymbol{\Delta}_i^\star = 0 \quad \boxed{}
$$

 $max \Gamma$ s.t. 2 $(\mathbf{\Delta}_i - \mathbf{\Delta}_j) \cdot (\mathbf{r}_i - \mathbf{r}_j) \geq \Gamma \sigma_{ij}^2 - ||\mathbf{r}_i - \mathbf{r}_j||^2$

- Forces ⇔ **active** dual variables
- $\boldsymbol{\kappa}$ *Rattlers* $\boldsymbol{\Leftrightarrow}$ *particles with* $<$ $d+1$ contacts

Dynamics near the jamming point

Díaz Hernández Rojas, Ricci-Tersenghi, Parisi "Inferring the particle-wise dynamics of amorphous solids from the local structure at the jamming point", Soÿt Matter 17, 1056–1083 **(2020)**

Correlation of structure and dynamics

Find a connection **between dynamical features** (*e.g.* relaxation time) and **local structure** (*i.e. inherent structures)* [Tong and Tanaka, *Nat. Communications*, **(2019)**] C $1/\tau_{\alpha}$ $\Theta_{\rm CG}$ Bare Θ 10^{-5} 10^{-3} 10^{-1} 0.04 0.115 0.09 0.19 0.11 0.13

Require coarse graining! (a posteriori)

High quality predictions of most mobile particles (black) from local MACHINE AND DEEP LEARNING methods

structure.

Hard to obtain a physical picture (**interpretability problem**)

Iso-configurational ensemble (ICE):

Generate many trajectories with the same initial conditions.

- Study statistical properties of mobility
- Strong system dependence if using the wrong structural variable

… and near jamming?

[Coulais, Behringerb, Dauchot, *Soft Matter*, **(2014)**]

Our approach:

How do particles move?

We will use the first moments instead of the full distribution

Correlation in hard sphere systems (Mol. Dyns.)

 $(\beta = 10)$

Correlation in soft sphere systems (Monte Carlo)

Very simply and robust method:

- Applicable to different dynamical protocols and potentials
- "**Universal**" decorrelation rate
- We can **predict mobilities and preferential directions,** by ranking according to S_i (short times)

K = Spearman correlation $x \rightarrow$ Rattlers $(\tau = 250 \text{ MC steps})$

In summary

- 1. Nearest neighbours (contacts) can be used to infer statistical properties of short time dynamics.
	- a. We obtained a particle-wise description of:
		- i. Preferential directions: $\langle \delta \mathbf{r}_i \rangle \sim \mathbf{C}_i$
		- ii. Mobility: $\langle |\delta \mathbf{r}_i|^2 \rangle \sim S_i$
	- b. Information about the forces is redundant and **worsens** the quality of the inference.
- 2. Particles not only vibrate around an energy minimum configuration. ⇒ Normal mode description fails!
	- a. Displacements do not occur along eigenmodes.
	- b. No criterion for selecting the relevant modes.
- 3. System independent decorrelation: likely related to how the configuration initially explores a meta-basin.

ToDo's

Perform inference on full distribution of displacements and mobilities (not only their first moment).

Analyse correlations of structural variables: if particles are **dynamically** correlated, they must also be **structurally**

Improve duration of inference by, *e.g.* including more neighbours and coarse graining.

Finite size scaling of critical distributions of forces and gaps

In collaboration with:

- Patrick Charbonneau
- **Eric Corwin**
- **Cameron Dennis**
- Harukuni Ikeda

"Finite size effects in the microscopic critical properties oÿ jammed configurations: a comprehensive study of the effects of different types of disorder", arXiv:2011.10899 **(PRE accepted)**

Scaling collapse to validate critical exponents

 $\chi=V[\left\langle m^{2}\right\rangle -\left\langle m\right\rangle ^{2}]\sim\left\vert t\right\vert ^{-\gamma}$ $|\xi\sim|t|^{-\nu}$ $t=\frac{T-T_c}{T_c}$.

[Amit, Martín-Mayor, *Field Theory, RG, and Critical Phenomena* **(2005)**]

Divergence at the critical point!!

Only in the **thermodynamic limit**, $L \rightarrow ∞$

Validating *Jamming criticality* as $\varphi \rightarrow \varphi_I^+$

Hierarchical free energy landscape

[Charbonneau, Kurchan, Parisi, Urbani, Zamponi, *Nat. Communications*, **(2014)**]

Why studying Finite Size Effects at jamming?

1. **Exact** MF predictions for the contact forces and interparticle gaps $(h_{ij} = \frac{r_{ij}}{\sigma_i} - 1)$

$$
p(f) \sim f^{\theta_e}, \quad \theta_e = 0.42311...
$$

 $g(h) \sim h^{-\gamma}, \quad \gamma = 0.41269...$
 \sim but uses $d \rightarrow \infty$ assumption

2. But maybe also valid in *d=2,3,...*

Not systematic study so far.

In *finite d* another contribution: **localized forces** ⟺ **bucklers** $p(f_{\ell}) \sim f_{\ell}^{\theta_{\ell}}, \quad \theta_{\ell} \approx 0.17$

- (a) (b) (c) $\widehat{\mathbb{S}_{\boldsymbol{y}}^{10^{-2}}}\nonumber\\$ $G(f/\langle f\rangle)$ $^{10^{-1}}$ $\frac{10^{-2}}{55}$ 10^{-4} $10²$ $f^{1.17462}$ $f^{1.17462}$ $f1.17462$ $\frac{1}{f^{1.19}}$ $f1.25$ f 1.30 $f1.42311$ (1.4231) $f1.42311$ 10^{-6} 10^{-1} 10^{-3} 10^{-1} 10^{-5} 10^{-3} 10^{-5} 10^{-3} 10^{-1} $f/\langle f \rangle$ $f/\langle f \rangle$ $f/\langle f \rangle$ [Charbonneau, Corwin, Parisi, Zamponi, *PRL*, **(2015)**]
- 3. Stability bounds **(SATURATED)**
	- $\gamma \geq \frac{1}{2+\theta_c}$ $\gamma \geq \frac{1-\theta_\ell}{2}$

An accurate estimation is very important.

FSS is a very precise technique for estimating critical exponents.

Already tested in perceptron; see [Kallus, *PRE*, **(2016)**]

4. Other models (crystals) have *different* scalings

 C

 $10¹$

Our models and methods

Results with monodisperse spheres

Scaling in MK model

- Pronounced finite *N* effects due to:
- 1. **Fully connected** MF model

⇒ *very large systems needed to observe thermodynamic limit behaviour*

- 2. Very high connectivity (1% of spheres have *z >12*) and large particles ($\varphi_J \geq 3.1$)
	- ⇒ **Reduced effective size**

Gaps scaling in other models

What did we learn?

- 1. **Verified the exponents** predicted by *Mean Field* $\text{theory}\ \ p(f_e)=\left\{ \begin{array}{ll} N^{\frac{-\theta_e}{1+\theta_e}}\,p_0(fN^{\frac{1}{1+\theta_e}}),&\text{if}\ \ fN^{\frac{1}{1+\theta_e}}\ll 1\quad p_0(x)\sim 1\ f^{\theta_e},&\text{if}\ \ fN^{\frac{1}{1+\theta_e}}>1 \end{array}\right.\left(\tilde{c}(x)\sim \left\{\begin{array}{ll}x,&x\ll 1\ x^{1+\alpha},&x\gg 1\end{array}\right.\right)$
- 2. *d=2* is **the upper critical dimension** (corroborated by logarithmic corrections to scaling)
- 3. Scaling collapse **much clearer in gaps** distribution (+ forces in MK)

$$
\boldsymbol{\mathring{c}}\boldsymbol{\mathring{c}}\boldsymbol{\mathring{c}}\left(\begin{array}{c}\xi_h\geq N^{1/d}\\ \xi_f\ll N^{1/d}\end{array}\right)\implies \xi_h\gg \xi_f\qquad \qquad \textbf{???}
$$

- 4. **Crystalline ordering** seems to break universality (*localized forces and gaps*).
- 5. Linear regime is notoriously robust (present in **all the models**). It can be observed clearly in gaps distribution and possibly also in the (extended) forces distribution.
- 6. It is likely that *stability bounds need to be generalized* to deal with *other types of disorder* (**near crystals, MK**)

Possibly due to **1S-SS** condition (global property)

MUCHAS GRACIAS!!!

iLP can be accelerated with Molecular Dynamics

To approach jamming ($p \rightarrow \infty$) we used MD with a Lubachevsky-Stillinger compression: $\dot{\sigma}(t) = \kappa$

- 1. Fast compression up to *p=500* (avoid crystal)
- 2. Slow compression to a given target *p*
- 3. Use high *p* configuration as *initial condition* of iLP.

MD compression:

- 1. Very fast (asynchronous event-driven)
- 2. Many configurations can be produced simultaneously

- iLP algorithm:
	- 1. Benefits from interior-point (concurrent) solvers
- 2. Limited by system's size (about $\sim N^3$)

"Universal" decorrelation rate

The *loss of correlation* seems to be a general function of:

- **Evolution of the configuration** (measured by Δ)
- **● Distance from jamming point** $(\varphi_J-\varphi)$ T

Localized forces

No presence oÿ finite size corrections **…expected**

