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What is Jamming?

[van Hecke,  J. Phys.: Cond. Matter (2010)]

[Torquato and Stillinger,  Rev. Mod. Phys.,  82, 3 (2010)][Donev, PhD Thesis (Princeton) (2006)]

[Vinaigrette attempt; RDHR unpublished recipe (2020) ]

In a jammed state all the degrees of freedom are 
completely frozen (i.e. blocked) due to geometric frustration.



Glass and Jamming transitions

[Berthier and Ediger, Physics Today 69 (2015)]

In (infinitely) hard spheres 
systems, the relevant physical 

variables are the (reduced) 
pressure and the packing fraction.

Soft Spheres / Hard Spheres 
“Dictionary”

… and flip over
[van Hecke,  J. Phys.: Cond. Matter (2010)]



Mean Field picture of glasses near jamming

1. Dynamical glass transition at  

2. An (equilibrated) glass state is 
identified by its values of p and

3. It can be adiabatically compressed (and 
decompressed) until a Gardner 
transition comes about, at

4. For                , the glass is in a marginal 
phase, that ends at jamming. 

Possibly also valid in 3d !!!

[Charbonneau et al.,  Ann. Rev. Cond. Matt.  (2017)]

[Berthier et al.,  PNAS  (2016)]



Jamming: same phenomena different systems

[Franz et al., SciPost  
(2017)]

Constraint satisfaction problems:
Same universality class as spheres-based models

[Liu, Nagel,  Ann. Rev. Cond. 
Matt.  (2010)]

[Baule et al.,  Rev. Mod. Phys.  (2018)]

Athermal 
systems: foams, 

emulsions, grains

Edwards Stat Mech ⟷ FullRSB



Iterative Linear 
Programming Algorithm



Iterative LP Algorithm to reach jamming

Jamming as a constrained optimization problem: Rearrange 
particles in order to maximise the system density, without 
any overlap between particles.
Inspired by [Donev et al. J. Comp. Phys. (2004)] and [Torquato and 
Jiao, PRE (2010)]

EXACT FORMULATION:

Feasible region: 
non-convex

Non-convex problem 

( Very hard!! )

LINEAR APPROXIMATION:

Feasible region: 
polytope(convex)

● Not huge error if close to jamming
● Easy (Linear Programming)
● Several iterations to reach jamming

A version used for polydisperse spheres was 
introduced in [Artiaco, Baldan, Parisi PRE, (2020)]



Iterative LP Algorithm to reach jamming

Optimal solution: saturates linear constraints

(Old) constraints 
with new

Generate new instance 

of LP with

● Updated sizes

● Updated positions

● Repeat!

Until...

● Forces ⇔ active dual variables
● Rattlers  ⇔ particles with < d+1 contacts



Dynamics near the 
jamming point

Díaz Hernández Rojas, Ricci-Tersenghi, Parisi
“Inferring the particle-wise dynamics of amorphous 

solids from the local structure at the jamming point”, 
Soft Matter 17, 1056–1083 (2020)



Correlation of structure and dynamics

[Bapst et al., Nat. Phys., (2020)]

High quality predictions 
of most mobile particles 
(black) from local 
structure.

Hard to obtain a physical 
picture (interpretability 
problem)

Machine and deep learning 
methods

[Tong and Tanaka, Nat. 
Communications, (2019)]

Require coarse graining! (a posteriori)

Find a connection between dynamical 
features (e.g. relaxation time) and local 
structure (i.e. inherent structures)

[Hocky et al,  PRL 113,  (2014)]

Iso-configurational ensemble (ICE):
Generate many trajectories with the same 
initial conditions.

● Study statistical properties of mobility
● Strong system dependence if using the 

wrong structural variable



… and near jamming?

[Ikeda, Berthier, Biroli, J.Chem. Phys,  (2013)]

EXPERIMENTS!!!
Shaken rigid particles 
and viscoelastic disks

Very close to 
jamming.

They belong to the 
anharmonic regime

[Coulais, Behringerb, Dauchot, Soft Matter,  (2014)]

OUR WORKDynamic criticality NEAR jamming

● Identified from normal modes 

estimation

● Mainly valid at long times

● Results derived for a generic 

potential

● Critical behaviour:

● No single-particle analysis



Our approach:

III. Study statistics of displacements
[per particle]

a) Find preferential directions

b) How much do particles move
Statistical correlations ?

 I. Begin with an isostatic jammed 
configuration   (N=1024)
(generated via iLP)

II. Move away from the jamming 
point by a small amount to 

generate trajectories

Always with the same 
initial condition

I.e. We’ll sample from the ICE

MOLECULAR DYNAMICS 
with hard spheres

5,000 independent 
trajectories

MONTE CARLO simulations 
at small T

1,000 independent 
trajectories



How do particles move?

Preferential directions of motion ● Broad range of mobilities
● Non-negligible sample to sample fluctuations

We will use the  first moments instead of the full distribution



Correlation in hard sphere systems (Mol. Dyns.)

K = Spearman correlation
x → Rattlers
τ → Collisions/particle

Test different (scalar) structural variables



Very simply and robust method:
● Applicable to different dynamical protocols and potentials 
● “Universal” decorrelation rate
● We can predict mobilities and preferential directions, by 

ranking according to Si                         (short times)

Correlation in soft sphere systems (Monte Carlo)

K = Spearman correlation
x → Rattlers

(τ =250 MC steps)



In summary

1. Nearest neighbours (contacts) can be used to infer 
statistical properties of short time dynamics.
a. We obtained a particle-wise description of:

i. Preferential directions:
ii. Mobility: 

b. Information about the forces is redundant and 
worsens the quality of the inference.

2. Particles not only vibrate around an energy minimum 
configuration. ⇒ Normal mode description fails!
a. Displacements do not occur along eigenmodes.
b. No criterion for selecting the relevant modes.

3. System independent decorrelation: likely related to 
how the configuration initially explores a meta-basin. 

ToDo’s
Perform inference on 
full distribution of 
displacements and 
mobilities (not only 
their first moment).

Analyse correlations of 
structural variables: if 
particles are dynamically 
correlated, they must also 
be structurally

Improve duration of 
inference by, e.g. 
including more 
neighbours and 
coarse graining.



Finite size scaling of 
critical distributions of 
forces and gaps

In collaboration with: 

● Patrick Charbonneau
● Eric Corwin
● Cameron Dennis
● Harukuni Ikeda

“Finite size effects in the microscopic critical properties of 
jammed configurations:  a comprehensive study of the effects of 

different types of disorder”, 
arXiv:2011.10899 (PRE accepted)



Scaling collapse to validate critical exponents

Divergence at the 
critical point!!

Only in the thermodynamic 
limit, L → ∞

In finite systems:
[Amit,  Martín-Mayor, Field Theory, RG, and Critical Phenomena  (2005)]



What happens exactly at

Validating Jamming criticality as 

[Goodrich, Liu, Nagel,  PRL (2012)]

Criticality at the jamming transition:

1. There is NO (usual) correlation length

2. Size scaling is caused by the condition of 
Single State of Self Stress:

3. Scaling relations can be thus obtained:

[Liu, Nagel,  Ann. Rev. Cond. 
Matt.  (2010)]



Hierarchical free energy landscape

Forces are determined gradually when 
going down a meta-basin

[Charbonneau, Kurchan, Parisi, Urbani, Zamponi, Nat. Communications, (2014)]

(i,j) in contact in 
both configurations

otherwise

Test similarity of network of 
contacts between different 

jammed states

[Charbonneau et al.,  Ann. Rev.  
Cond. Matt.  (2017)]



Why studying Finite Size Effects at jamming?

… but uses d→ ∞ assumption

1. Exact MF predictions for the 
contact forces and interparticle 
gaps

2. But maybe also valid in d=2,3,...

Not systematic study so far.

In finite d another contribution: 
localized forces ⟺  bucklers

[Charbonneau, Corwin, Parisi, Zamponi, PRL,  (2015)]

4. Other models (crystals) have different scalings

[Charbonneau et al., PRE,  (2019)][Tsekenis, arXiv: 2006.07373,  (2020)]

3. Stability bounds (SATURATED)

An accurate estimation is very 
important.

FSS is a very precise technique 
for estimating critical exponents.
Already tested in perceptron; 
see [Kallus, PRE, (2016)]



[Charbonneau at et al,  PRE  (2019)]
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Monodisperse 
spheres

Mari-Kurchan 
model in d=3

( MF-like, useful 
reference)

Polydisperse disks
(upper critical 

dimension)

Near crystals 
(3d, minimally 
polydisperse)

1. For a given N, generate MN samples 
and obtain the forces and gaps in each 
one.

2. Join data of all samples of the same N 
and compute the cumulative 
distribution function
(Higher accuracy)

3. Rescale datasets of different N using 
the expected (MF) exponents and 
verify if the distributions collapse

[Mari, Kurchan,  J. Chem. Phys.  (2011)]



Results with monodisperse spheres

FORCES (extended): negligible size effects. GAPS: clear signatures of finite N corrections

Hard spheres Soft spheres Hard spheres Soft spheres

Linear regime!!MF prediction MF prediction

Perfect matching of both limits:



Scaling in MK model

FORCES (extended): 
Small but noticeable size effects

GAPS:
clear size scaling collapse

Pronounced finite N 
effects due to:

1. Fully connected MF model 
 ⇒ very large systems needed 
to observe thermodynamic 
limit behaviour

2. Very high connectivity (1% of 
spheres have z >12 ) and large 
particles (              )
⇒ Reduced effective size 



Gaps scaling in other models

Polydisperse disks (radii ~ log-normal dist.) Minimally polydisperse FCC crystal

Upper crit. dim. ⇒ Logarithmic corrections (Violates stability bounds!!)



What did we learn?

1. Verified the exponents predicted by Mean Field 
theory

2. d=2 is the upper critical dimension (corroborated by 
logarithmic corrections to scaling)

3. Scaling collapse much clearer in gaps distribution 
(+ forces in MK)

4. Crystalline ordering seems to break universality 
(localized forces and gaps).

5. Linear regime is notoriously robust (present in all the 
models). It can be observed clearly in gaps distribution 
and possibly also in the (extended) forces distribution.

6. It is likely that stability bounds need to be generalized to 
deal with other types of disorder (near crystals, MK)

Possibly due to 1S-SS 
condition

(global property)

???¿¿¿



MUCHAS GRACIAS!!!



iLP can be accelerated with Molecular Dynamics

To approach jamming (p → ∞) we used MD with a 
Lubachevsky-Stillinger compression: 

1. Fast compression up to p=500 (avoid crystal)
2. Slow compression to a given target p
3. Use high p configuration as initial condition of 

iLP.

MD compression: 
1. Very fast (asynchronous event-driven)
2. Many configurations can be produced 

simultaneously

iLP algorithm:
1. Benefits from interior-point 

(concurrent) solvers
2. Limited by system’s size  (about ~N 3)



“Universal” decorrelation rate 

The loss of correlation seems to be a 
general function of:

● Evolution of the configuration 
(measured by     )

● Distance from jamming point



Localized forces

No presence of finite size corrections   …expected

Spheres Polydisperse disks FCC structure MK model

No power law!
( Unstable! )


