

Falling into Gargantua: gravitational waves from extreme-mass ratio inspirals

Gabriel Andres Piovano

University of Rome La Sapienza, Physics Department & INFN Rome

Ph.D. seminars, 09 June 2021

Gravitational waves from astrophysical binaries

2 Extreme mass-ratio inspirals: an overview

Streme mass-ratio inspirals with a spinning secondary

Gravitational waves from astrophysical binaries

Gabriel Andres Piovano

Gravitational waves (GW): what are we talking about?!?

Weak perturbation $h_{\mu\nu}$ of a background space-time $g^0_{\mu\nu}$

$$g_{\mu
u}=g^0_{\mu
u}+h_{\mu
u}+\mathcal{O}(h^2)$$

Far for sources, $g^{0}_{\mu\nu} = \eta_{\mu\nu}$ (flat space-time). Properties of gravitational waves (GW)

- propagate in vacuum at the speed of light
- rank 2 tensor perturbation
- two physical polarizations, $h_{ imes}$ and h_{+}
- extremely weak: prefactor $G/c^4 \sim 8 \cdot 10^{-55} s^2/({\rm kg} \cdot {\rm m})$
- quadrupolar radiation

Astrophysical sources of GW

GW events detected come from mergers of astrophysical compact binaries

Credit: Abbott+, PRL 116, 061102 (2016)

GW signal divided in 3 part:

- inspiral
- merger
- ringdown

LIGO/Virgo detected 50 events:

- mass ratio $q \lesssim 1/2$
- circular, equatorial orbits
- signal last \$\mathcal{O}\$(10)\$
- frequency signal $\mathcal{O}(10)$ Hz

Astrophysical sources of GW

Credit: NASA Goddard Space Flight Center

Extreme mass-ratio inspirals: an overview

Gabriel Andres Piovano

Falling into Gargantua

Falling into Gargantua

"The Life of Gargantua and of Pantagruel" by François Rabelais

Falling into Gargantua

Extreme-mass ratio inspirals (EMRIs)

- stellar-mass object captured by a supermassive black hole
- observable by future space-borne observatories (LISA, TianQin)
- complicated orbits (eccentric, inclined)
- ullet long, rich waveform with $\sim 10^5$ cycles (remain in band for years!)

Credit: Maarten van de Meent

- binary parameters measurable with excellent accuracy
- possible to localize the sources
- possible to probe environment (accretion disk)
- test extension of General Relativity (additional boson particles)
- test the Kerr paradigm: is the primary a black hole?

Modelling GW emission in EMRIs

Solve the Einstein field equations?

$$G_{\mu
u}[g_{
ho\sigma}] = 8\pi T_{\mu
u}[g_{
ho\sigma}]$$

Nope! Computationally too expensive for EMRIs Typical mass ratio $q = \mu/M = 10^{-4} - 10^{-6} \implies$ expand everything in q

Credit: Wikipedia

$$g_{\mu
u}=g^0_{\mu
u}+h^{(1)}_{\mu
u}+h^{(2)}_{\mu
u}+{\cal O}(q^3)$$

 $g^0_{\mu\nu}$ is the black hole metric primary Equations of motion

$$oldsymbol{v}^eta
abla_eta p^lpha = 0 + q F^lpha_{(1)} + q^2 F^lpha_{(2)} + \mathcal{O}(q^3)$$

Need to evolve both equations of motion and ODEs for $h_{\mu\nu}^{(1)}, h_{\mu\nu}^{(2)}$

Extreme mass-ratio inspirals with a spinning secondary

Gabriel Andres Piovano

GW emission for spins aligned, circular equatorial orbits

$$\sigma := \frac{S}{\mu M} = \frac{S}{\mu^2} q = \chi q$$
 with $q \ll \sigma \ll 1$ in EMRIs

Special orbit

- Circular equatorial orbits
- $\bullet\,$ Secondary spin χ (anti)-aligned to primary spin a
- \implies dynamics fixed by $E = E(r, \sigma), J_z = J_z(r, \sigma), \Omega = \Omega(r, \sigma)$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -q^2 \mathcal{F}(r,\sigma) \left(\frac{\mathrm{d}E}{\mathrm{d}r}\right)^{-1} \qquad \frac{\mathrm{d}\Phi}{\mathrm{d}t} = \Omega(r(t),\sigma)$$

$$egin{aligned} h_+ &= rac{\mu}{D} \sum_{\ell,m} [\operatorname{Re} \mathcal{A}_{\ell m}(t,\sigma) \cos(m\Phi) + \operatorname{Im} \mathcal{A}_{\ell m}(t,\sigma) \sin(m\Phi)] \ h_ imes &= rac{\mu}{D} \sum_{\ell,m} [\operatorname{Re} \mathcal{A}_{\ell m}(t,\sigma) \sin(m\Phi) - \operatorname{Im} \mathcal{A}_{\ell m}(t,\sigma) \cos(m\Phi)] \end{aligned}$$

Energy fluxes ${\mathcal F}$ and amplitudes ${\mathcal A}_{\ell m}$ obtained by solving 2 decoupled ODEs

Phase correction due to the secondary spin

Almost all information contained in GW phase $\Phi_{GW} = m\Phi$ Dephasing \sim 1rad is relevant \implies bug (systematics) or feature (physics)?

Parameter estimation with Fisher matrices

In the high SNR limit

$$\begin{split} \sigma_{x_i}^2 &= \Sigma_{ii} = (\Gamma^{-1})_{ii} & \text{covariance matrix} \\ \Gamma_{ij} &= \sum_{\alpha = I, II} \left(\frac{d\tilde{h}_{\alpha}}{dx^i} \middle| \frac{d\tilde{h}_{\alpha}}{dx^j} \right)_{\vec{x} = \vec{x}_0} & \text{Fisher matrix} \\ (p_{\alpha}|q_{\alpha}) &= 4 \text{Re} \int_{f_{\min}}^{f_{\max}} \frac{df}{S_n(f)} \tilde{p}_{\alpha}^*(f) \tilde{q}_{\alpha}(f) & \text{scalar product} \end{split}$$

11 parameters for circular equatorial orbits with spins (anti)aligned

- intrinsic: masses (ln μ , ln M), spins (a, χ), r_0
- extrinsic: ϕ_0 , angles $(\vartheta_S, \varphi_S, \vartheta_K, \varphi_K)$, distance $\ln D$

 Γ_{ij} is ill-conditioned: small error in $\Gamma_{ij} \implies$ large error in Σ_{ij} Some cases required waveforms with >90 digits for stable Γ_{ij} and Σ_{ij} !

Fisher-matrix errors neglecting the secondary spin

Masses: $M = 10^6 M_{\odot}, \mu = 10 M_{\odot}$. Spins: $a = 0.9, \chi = 0.1$ year observation.

l	In M	$\ln \mu$	a/M	r_0/M	ϕ_{0}
2	-3.24	-3.53	-4.15	-4.45	0.48
2+3	-3.25	-3.54	-4.16	-4.46	-0.52
2+3+4	-3.25	-3.55	-4.16	-4.46	-0.53

Table: \log_{10} of the errors.

ℓ	In D	$\Delta\Omega_S$	$\Delta\Omega_K$	
2	-0.33	$7.9 imes10^{-4}$	2.5	
2+3	-1.33	$7.3 imes10^{-4}$	$1.3 imes10^{-2}$	
2+3+4	-1.34	$7.2 imes10^{-4}$	$1.1 imes10^{-2}$	

Table: \log_{10} of the error on $\ln D$ and errors on the sky location of the source $(\Delta \Omega_S)$ and primary spin $(\Delta \Omega_K)$.

Piovano+, arXiv:2105.07083

Fisher-matrix errors including the secondary spin

$M = 10^6 M_{\odot}, \chi = 1.$	Sky location f	fixed. 1 year	observation
---------------------------------	----------------	---------------	-------------

a/M	μ/M_{\odot}	prior	In M	$\ln \mu$	a/M	χ	r_0/M	ϕ_{0}
0.9	10	no	-2.26	-2.41	-2.66	2.85	-3.88	0.48
		yes	-3.24	-3.53	-4.14	0.48	-4.45	0.48
	100	no	-2.20	-2.39	-2.78	1.66	-4.14	-0.015
		yes	-3.30	-3.52	-4.32	0.064	-4.93	-0.024
0.99	10	no	-2.81	-2.96	-4.55	1.98	-3.89	0.47
		yes	-3.51	-3.76	-4.67	0.52	-4.32	0.47
	100	no	-2.14	-2.33	-3.39	1.21	-3.75	-0.12
		yes	-3.01	-3.22	-4.03	0.11	-4.50	-0.12

Table: \log_{10} of the errors with and without imposing a prior on χ . Only $\ell = 2$ is included.

• Secondary spin is not measurable

• With no prior on χ , correlations spoil errors on intrinsic parameters Piovano+, arXiv:2105.07083

We estimated errors on binary parameters for fully relativistic waveforms with a Fisher matrix approach

Summary:

- Our analysis confirm results obtained with kludge waveforms
- Secondary spin not measurable due to correlations

Future work:

- Consider eccentric and inclined orbits
- Include secondary spin in fast-waveform? (Challenging)
- More sophisticated statistical analysis? (MonteCarlo)
- Include conservative effects and spin evolution into the dynamics

Thank you for you attention!

Gabriel Andres Piovano