

DARK SECTOR SEARCHES AT THE PADME EXPERIMENT

Beth Long elizabeth.long@uniroma1.it (Sapienza Università di Roma, INFN Sezione di Roma)

26/05/21

PhD Seminars

Outline

- \circ What's the cosmological evidence for dark matter?
- What is the "dark sector"?
- What are dark photons and axions?
- \circ What is the PADME experiment?
- How do we conduct (in)visible searches?
- What's next at PADME?

The dark matter problem

• Galactic rotation curves

• Stars within galaxies

The dark matter problem

 $\circ\,$ Gravitational lensing, eg via the bullet cluster

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

• Anisotropies in the cosmic microwave background

Planck Collaboration. Cosmic microwave background (mollweide). Available online at http://planck.cf.ac.uk/all-sky-images, 2019

26/05/21

PhD Seminars

Pink = "normal" (baryonic)

Blue = non-luminous matter inferred

 \mathcal{D}_{ℓ}^{TT} [$\mu \mathrm{K}^2$]

matter in gas & dust

from gravitational effects

The dark sector & portal models

- The "dark sector" = hypothetical particles which make up dark matter
- It could connect feebly to the Standard Model (SM) via a "portal" particle
- Two portals at PADME:
 - $\,\circ\,$ Massive vector boson "dark photon" (A')
 - Pseudoscalar "axion-like-particle" (ALP)

Dark Sector Candidates, Anomalies, and Search Techniques

Portal production at PADME

- $\circ~e^+$ beam onto a thin diamond target
- $E_{beam} < 550 MeV$ gives us access to:
 - Associated production (nominal mechanism at PADME)
 - A'-strahlung
 - Resonant annihilation
- $\circ\,$ Identical processes for the A' and ALPs

 $^{\circ} \frac{N(e^+e^- \to A'\gamma)}{N(e^+e^- \to \gamma\gamma)}$ gives information about strength of SM-A' interaction

$$\frac{\sigma(e^+e^- \to A'\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(A'\gamma)}{N(\gamma\gamma)} \times \frac{Acc(\gamma\gamma)}{Acc(A'\gamma)} = \epsilon^2 \times \delta$$

 δ = phase space correction, analytically calculable

PhD Seminars

' coupling

Portal decay models

- Portal decay depends on its mass $(M_{A'})$ wrt dark sector particles (M_{γ}) and the electron (M_e) :
 - ∘ Light portal & heavy DM: $M_{A'} < 2 M_{\chi}$ and $M_{A'} < 2 M_e \Rightarrow$ long-lived, decays only into 3 SM photons
 - Light portal & light DM: $M_{A'} < 2 M_e$ but $M_{A'} > 2 M_{\chi} \Rightarrow$ decays only to dark sector particles ("invisible" decay)
 - Heavy(ish) portal: $M_{A'} > 2 M_e$ and $M_{A'} > 2 M_{\chi} \Rightarrow$ decays predominantly through "invisible", but also decays through "visible"

Current constraints: Dark photons

- Models are based on two characteristics:
 - Portal mass
 - $\circ~$ Coupling constant to SM

The experimental signature: Invisible decays

- Production: $e^+e^- \rightarrow A'\gamma$
- Experimental signature = 1 SM photon
- Electromagnetic calorimeter (ECal) measures energy & position of photon
- Knowing:
 - The beam energy
 - $\circ~$ The position of interaction in the target
 - $\circ~$ The position & energy of the SM photon

We reconstruct the kinematics of the interaction & therefore $M_{A'}$:

$$M_{A'}^2 = \left(E_{beam} + M_{e^-} - E_{\gamma} \right)$$

ECal

Experimental setup

- PADME was designed to detect associated production of A' with γ
- $\circ\,$ However, adding a second spectrometer allows us to search for visible decays

The experimental signature: Visible decays

- \circ Visible signatures ⇒ multi-lepton final states
- Of particular interest are:
 - Resonant *A*' production with $A' \rightarrow e^+e^-$
 - $e^+e^- → 3(e^+e^-)$ via dark Higgs: SM background is supressed by α^6 (*O*(10⁻¹³), giving a high BSM signal/SM background ratio

Positron Spectrometer

 e^+e^- final state

Projected physics reach

• The mass reach of PADME is governed by the beam energy

$$\sqrt{s} = \sqrt{2m_e * E_{beam}}$$

- At maximum $E_{beam} = 550$ MeV, maximum $m_{A'} < 23.7$ MeV
- The reach in coupling strength depends on pileup and beam background
- $\,\circ\,$ With 10^{13} total positrons on target, $\epsilon>10^{-3}$

E 3

Experimental status

- After two physics runs we've measured the following number of positrons on target (POT):
 - Run 1 = 7×10^{12} POT
 - Run 2 = 5.5×10^{12} POT
 - Precision = 5%
- The collaboration is now in data-analysis mode and planning our next steps

Next steps: ⁸Be/⁴He anomaly

- Collaboration at ATOMKI institute in Hungary
- Studying IPC decays of excited ⁸Be/⁴He nuclei

HAD

Next steps: ⁸Be/⁴He anomaly

 $\,\circ\,$ The bumps are consistent with the creation of a new particle with mass 17 MeV

He $\begin{cases} \frac{(\text{keV}) \times 10^{-4} \times 10^{-6} (\text{MeV/c}^2)}{510 & 2.5(3) & 6.2(7) & 17.01(12) \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline ^8\text{Be values} & 6 & 16.70(35) \\ \end{cases}$	$ \text{He} \begin{cases} \frac{\text{(keV)} \times 10^{-4} \times 10^{-6} \text{ (MeV/c}^2)}{510 & 2.5(3) & 6.2(7) & 17.01(12) \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ Averages & 5.1(13) & 16.94(12) \\ ^8\text{Be values} & 6 & 16.70(35) \end{bmatrix} $	He $\begin{cases} \frac{(\text{keV}) \times 10^{-4} \times 10^{-6} (\text{MeV/c}^2)}{510 & 2.5(3) & 6.2(7) & 17.01(12) \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline \text{^8Be values} & 6 & 16.70(35) \\ \end{cases}$		E_p	IPCC	B_x	Mass	Confidence
He $ \begin{cases} 510 & 2.5(3) & 6.2(7) & 17.01(12) & 7.3\sigma \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline \\ $	He $ \begin{cases} 510 & 2.5(3) & 6.2(7) & 17.01(12) & 7.3\sigma \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline ^8\text{Be values} & 6 & 16.70(35) \\ \end{cases} $	He $\begin{cases} 510 & 2.5(3) & 6.2(7) & 17.01(12) & 7.3\sigma \\ 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline ^8\text{Be values} & 6 & 16.70(35) \\ \end{cases}$		(keV)	$\times 10^{-4}$	$\times 10^{-6}$	(MeV/c^2)	
He $\begin{cases} 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline ^8\text{Be values} & 6 & 16.70(35) \\ \end{cases}$	He $\begin{cases} 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline Averages & 5.1(13) & 16.94(12) \\ \hline ^8 Be values & 6 & 16.70(35) \\ \end{cases}$	He $\begin{cases} 610 & 1.0(7) & 4.1(6) & 16.88(16) & 6.6\sigma \\ 900 & 1.1(11) & 6.5(20) & 16.68(30) & 8.9\sigma \\ \hline \text{Averages} & 5.1(13) & 16.94(12) \\ \hline ^8\text{Be values} & 6 & 16.70(35) \\ \hline \end{cases}$	ſ	510	2.5(3)	6.2(7)	17.01(12)	7.3σ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	He 🗸	610	1.0(7)	4.1(6)	16.88(16)	6.6σ
Averages $5.1(13)$ $16.94(12)$ ⁸ Be values 6 $16.70(35)$	Averages $5.1(13)$ $16.94(12)$ ⁸ Be values 6 $16.70(35)$	Averages $5.1(13)$ $16.94(12)$ ⁸ Be values 6 $16.70(35)$		900	1.1(11)	6.5(20)	16.68(30)	8.9σ
⁸ Be values $6 16.70(35)$	⁸ Be values 6 16.70(35)	⁸ Be values 6 16.70(35)		Averages		5.1(13)	16.94(12)	,
				⁸ Be values		6	16.70(35)	

Next steps: ⁸Be/⁴He anomaly

- $\circ\,$ If the anomaly is due to a new particle, reversing the process must be possible
- Annihilating an e^+ with an e^- at exactly the right energy to create this new particle ("on resonance") increases the cross section of production significantly
- $\circ\,$ The e^+ energy needed to produce a 17 MeV particle on resonance is 282 MeV
- LNF is the only facility in the world able to do this!

X17

 10^{-2}

 10^{-3}

 10^{-}

Vectors (A') Phys. Rev. D 101, 071101(R) (2020)

 e^+

NA48

E141

Conclusions

- PADME was designed and constructed to search for a dark photon in e^+e^- annihilation
- $\circ\,$ There are a number of accessible models and final states available to PADME
- The PADME collaboration is now performing physics analysis on data from Run 2
- We also have big plans for the future!
- Further reading is available here:
 - M. Raggi and V. Kozhuharov, Proposal to Search for a Dark Photon in Positron on Target Collisions at DAΦNE Linac, Adv. High Energy Phys. 2014 (2014) 959802 [arXiv:1403.3041].
 - R. Assiro et al., Performance of the diamond active target prototype for the PADME experiment at the DAΦNE BTF, Nucl. Instrum. Meth. A 898 (2018) 105 [arXiv:1709.07081].
 - P. Albicocco et al. Characterisation and performance of the PADME electromagnetic calorimeter, JINST 15 T10003 (2020) [arXiv:2007.14240].
 - S. Ivanov and V. Kozhuharov, The charged particle veto system of the PADME experiment, AIP Conf. Proc. 2075 (2019) 080005.
 - A. Frankenthal et al., Characterization and performance of PADME's Cherenkov-based small-angle calorimeter, Nucl. Instrum. Meth. A 919 (2019) 89 [arXiv:1809.10840].
- For more info, don't hesitate to get in touch!

Thank you for your attention and let's turn the dark on!

Backup

The dark matter problem

- The first evidence for non-luminous matter came from galactic rotation curves
- The same effect was then seen by Vera Rubin et al. for stars within galaxies
- "The conclusion is inescapable that nonluminous matter exists beyond the optical galaxy" (Rubin et al. The Astrophysical Journal, 238:471-487, 1980 June 1)

The dark matter problem

- Gravitational lensing, eg via the bullet cluster, also gives information about the existence and distribution of non-luminous matter
- The bullet cluster collision also tells us that the dark matter (DM) self-interaction cross-section is low
- Anisotropies in the cosmic microwave background also give evidence for DM

Planck Collaboration. Cosmic microwave background (mollweide). Available online at http://planck.cf.ac.uk/all-sky-images, **2019**

Pink = "normal" (baryonic) = matter in gas & dust

Blue = non-luminous matter inferred from gravitational effects

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STSCI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STSCI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Aghanim, Planck Collaboration N. et al. "Planck **2018** results: V. CMB power spectra and likelihoods." *Astronomy and Astrophysics* **641** (2019): 1-92.

26/05/21

PhD Seminars

Dark sector searches at PADME

- PADME = Positron Annihilation to Dark Matter Experiment
- PADME is installed in the Beam Test Facility at the INFN National Laboratories of Frascati (LNF)
- LNF has been devoted to particle physics research and accelerator development ever since its foundation

Current constraints: ALPs

PhD Seminars

Experimental backgrounds: Invisible decays

- We have two principle sources of background:
 - $\,\circ\,$ Bremsstrahlung in the target: missing e^+
 - $\circ~$ 2 (3) photon annihilation where 1 (2) of the photons goes undetected
- Bremsstrahlung suppression:
 - $\circ\,$ A magnetic field deflects the positron into the "Positron Veto (PVeto)" detector
 - Since the Bremsstrahlung photon is usually emitted with a small angle to the beam, a central hole in the ECal allows the photon to pass into the Small Angle Calorimeter (SAC), which is designed to cope with the high rate

Experimental backgrounds: Invisible decays

- We have two principle sources of background:
 - $\,\circ\,$ Bremsstrahlung in the target: missing e^+
 - $\circ~$ 2 (3) photon annihilation where 1 (2) of the photons goes undetected
- Annihilation background suppression:
 - $\circ~$ We veto events with 2 in-time photons in ECal
 - Maximising granularity, angular coverage and energy resolution of ECal reduces the probability of photons escaping detection

