IKON, a study of the KN interaction with in-flight low momentum kaons

Alessandra Filippi INFN Torino

LNF SC Committee, 40th meeting - LNF, June 24, 2010

IKON : Interacting Kaons On Nucleons

- A research project for the measurement of low momentum cross-sections of Kaon/Antikaon induced reactions at DAΦNE
- Participating institutions
 - INFN Bari
 - Dip. Meccanica Uni-BS and INFN Pavia
 - INFN LNF
 - INFN Torino, Dip. Fisica Generale & Sperimentale Uni-TO, INAF-IFSI Torino
 - INFN Trieste and Dip. Fisica Uni-TS
 - TRIUMF, Canada
 - Theoretical support: Rez (Prague)

Overview

- Slow kaons at DAΦNE: unique features
- The physics of charged kaon scattering:
 - Kaons
 - Antikaons
 - Open issues
 - Reasons of interest
- IKON: an experiment at DAΦNE to perform precision crosssection measurements of in-flight low momentum kaons

 VDET+KLOE: high precision general purpose detector
 Feasibility studies (VDET simulations, kinematics, yields)
 Practical infos: time scale, plans for 2011...

Conclusions

Kaon-Nucleon scattering database

DAONE

DAONE

at low energy POOR WORLD DATABASE and LARGE ERROR BARS

DAΦNE is the only world facility for near-threshold KN measurements⁴

K[±]'s at DAΦNE: experimental conditions

- Crab Waist Crossing: 25 mrad
- \$\phi(1020)\$ produced with boost: ~12 MeV/c
- Kaons from φ decay: φ(1020) → K⁺K⁻, B.R. 48%
- 115-141 MeV/c decay kaons
- ~10³ \(1020) / s

Experimental challenge:

- Track kaons and measure their momentum *before* their interaction
- Track final state products of K[±] scattering

KLOE

VDET: KLOE can host a vertex detector with a gas target (H_2/D_2) , available room r=20 cm

KLOE + VDET = IKON

The physics issues: K⁺N and K⁻N Different features of the K[±]N interaction call for different theoretical approaches

- Absence of resonances
 - Only elastic and CEX reactions possible
- Studied with perturbative approaches or meson exchange models

- Existence of I=0,1 resonances, even below threshold
- Strong coupling to many channels
- Perturbative methods cannot be applied
 - Approximated models with coupled channels

K⁺N: present experimental situation I

TOTAL σ(K⁺p) on Hydrogen (I=1) - Dominant: elastic channel No measurements p_{κ} < 150 MeV/c

TOTAL $\sigma(K^+n)$ on **Deuterium (I=0,1)** – Elastic + CEX reactions Only source of I=0 KN interaction

K⁺N: present experimental situation II

• DIFFERENTIAL $d\sigma/d\Omega$

 – K⁺p data: different trend between interactions in H₂ and D₂

 – K⁺d: disagreement with theoretical predictions, both on p and n

General lack of low momentum measurements
K⁺d: no data < 342 MeV/c

Why new K⁺N measurements needed?

Low energy data crucial to tune Chiral SU(3) theories

- Better understanding of SU(3) at low energy
- Fix low energy parameters
 - I=0 K⁺N scattering lengths
 - Known at 10%, based on data > 130 MeV/c
 - Nuclear phase shift sign (+/-)
- Make "educated guess" of higher energy behaviour (Θ⁺)

Precision measurement of KN Σ-term

- More sensitive to the nucleon strangeness content than $\pi N \sigma$ -term
- Existing measurements very old and with large errors
 - Precision improvement: factor >5 with σ evaluations @ 10%

K⁻N interaction: overview

NO ChPT

- Baryonic resonances, I=0,1: Λ(1115), Σ(1190), Σ(1385), Λ(1405)...
- Non-perturbative coupled-channel approach to describe all aspects of the K⁻N interaction
- Low-energy data crucial input to enhance the predicting power of the KN models
 - Lack of experimental constraints close to threshold
 - scarcely selective models
 - poor below-threshold predictive power
 - Exp.data with inconsistencies
 - No model able to account for them

K⁻N cross sections: available data & best fit

Experimental data with 20% precision at most

- $\Sigma\pi$ measured lineshapes not reproduced satisfactorily by models yet
 - Old experiments measured $\Sigma^{\pm}\pi^{\mp}$ channels only, at high momentum
 - New results by ANKE & CLAS, also on $\Sigma^0 \pi^0$
- More data still needed

Summary: possible Kp(d) measurements All of them will be collected *at the same time*

- K[±] elastic scattering on protons: K[±] $p \rightarrow K^{\pm} p$
- K[±] quasi-elastic scattering on neutrons: K[±] d \rightarrow K[±] np
- K^{\pm} elastic scattering on deuterons: $K^{\pm} d \rightarrow K^{\pm} d$
- Inelastic K⁻ reactions on protons close to threshold (Y prod.) $- K^{-}p \rightarrow \Lambda \pi^{0}$ $- K^{-}p \rightarrow \Sigma^{\pm}\pi^{\mp}$
- Inelastic K⁻ interactions on deuterons close to thr. (Y prod.) – K⁻ d \rightarrow YN π (Y = Λ , Σ)
- Charge-exchange reactions (threshold: 89 MeV/c) $- K^{-}p \rightarrow K^{0}n, K^{+}n \rightarrow K^{0}p$ $- K^{0}_{L}p \rightarrow K^{+}n$
- **Regeneration reaction**: $K_{L}^{0} p \rightarrow K_{S}^{0} p$

Experimental setup: general requirements

VDET TRACKING

- Fine segmentation
 - Resolution below 50 µm
 - secondary vertex reconstruction

Very low mass

- minimize ΔE & multiple scattering
- Capable of operating in magnetic field (B=0.6 T)

• PARTICLE ID.

IKO

- Charged Particles: mass
 identification (dE/dx)
 - Highly ionizing kaons
 - Outgoing protons
 - Outgoing pions (MIPs)

Neutral particles

• Pions & Neutrons

TARGETS

- Solid targets (CH/CD)
 - Active (trigger)
 - Very thin (~500 μm)
 - Background from C
 - Gaseous (H₂/D₂)
 - Large dimension (~2 cm)
 - High pressure (~2-3 bar)
 - Mylar walled (beware! Material budget)
 - Clean vertex identification 2

 Fast trigger required on incoming K⁺K⁻ pairs

- Thin segmented scintillator (500 µm) – mat. budget!
- Self-triggering Si modules

Proposed VDET architecture I

- Sensor type: double sided micro-strip based on Silicon technology
- 200 µm x (~6 x 5 cm²) modules

 state-of-the-art: 300 µm
 thickness
- Spatial resolution: < 50 µm
- Wide dynamic range for mass discrimination (1-20 MIPs)
- Cylindrical symmetry around beam axis
 - large angular coverage
 - 100 equal modules arranged in prisms

Proposed VDET architecture II

Layer	# sensors	Radius [mm]
1	5	44.7
2	7	51.9
3	12×2	93.3
4	15×2	117.0
5	17×2	133.0

2 Inner layers

discrimination and reconstruction of K⁻K⁺ tracks coming from Φ's (primary vertex)

3 Outer layers

 discrimination and reconstruction of K⁻,K⁺,π⁻,π⁺,p tracks coming from the interaction of K⁻K⁺ pairs in the target (interaction vert¹⁹/₂x)

Simulations and feasibility studies I geometry

Simulations and feasibility studies II beam and primary kaons

- Φ generation with the present phase space configuration (Crab Waist)
- 2. $\Phi \rightarrow \mathbf{K}^+ \mathbf{K}^-$ decay
- 3. Beam spread: $\sigma_z \sim 1.5$ cm
- 4. Magnetic field: 0.6 T
- 5. Realistic VDET geometry
- Simulations with Virtual MonteCarlo Tools (Geant3 + Geant4 engines)

Beam spread along z:

± 3.25 cm inner layers ± 6.5 cm outer layers

Simulations and feasibility studies III

Δp (MeV/c)

26

33

38

45

75%: K⁺K⁻ acceptance

46%: generated kaons reaching the outmost layer (decay)

Average entrance kaon momentum in layers:

- Beam pipe: 127 MeV/c
- 1st Si layer: 121 MeV/c
- 3rd Si layer: 114 MeV/c
- 5th Si layer: 103 MeV/c

Measurements @ 2-3 momenta:

- 125 ± 10 MeV/c
- 105 ± 10 MeV/c
- < 95 MeV/c
 - (possibly)

Simulations and feasibility studies IV specific energy loss

Simulation of energy loss in 200 µm sensors:
 – Every layer can easily mass discriminate kaons from MIPs
 – Same technique as applied in FINUDA 23

Simulations and feasibility studies V kaon multiple scattering

(picture not to scale)

angular uncertainty due to Coulomb scattering: Θ ~ 3 - 4° FWHM

VDET with 100 µm pitch OK

Simulations and feasibility studies VI $K^{\pm}N \rightarrow K^{\pm}N$ elastic scattering, kinematics and yields

Differential xsections measurable in the angular range 4° -75°

$K^{\pm}N{\rightarrow}K^{\pm}N$ expected yields @ $p_{K}\text{=}100$ MeV/c

- $\sigma_{el}(K^-p) = 80 \text{ mb}, \sigma_{el}(K^+p) = 10 \text{ mb}$
- DAΦNE integrated luminosity: 1 fb⁻¹/2-3 months
- VDET acceptance/tracking eff.: ~ 50%
- H₂ target at 2 bar

N(K⁻p) = 6.4×10^3 ev. N(K⁺p) = 800 ev.

x 2 targets (H₂, D₂) x 2-3 mom. bins

Simulations and feasibility studies VIII K⁻d $\rightarrow \Sigma \pi n @ \Lambda(1405)$ peak

- How many Λ(1405) events in ~3 fb⁻¹?
 - Cross section: 600 µb @ 600 MeV/c, rising at lower momenta
 - Neutron detection: KLOE/CAL
 - Realistic efficiency for neutrons ~30%
 - $\Sigma^{\pm}\pi^{\mp}$ detection: IKON (sec. vertex) + KLOE/DCH
 - VDET acceptance ~80%
 - Reconstruction efficiency ~30%
 - D₂ target at 2 bar

~300 useful events in the Λ(1405) peak

Project time-scale

Vertex detector ready in 4 years (from 2011)
– Reduced VDET R&D (known technology, expertise already available)
• prototyping phase 1 year
– Construction extimated time: 3 years

Start 2012 - end 2015

Running time: 1.5 years
 – 2x targets, 2-3x mom. bins

IKON working program for 2010-2011

Simulations

- Further improvements + implementations
- Integration of KLOE geometry in the simulation program
- Implementation of VDET realistic geometry (prisms)
- Detailed study of all reaction kinematics
- Development of reconstruction program

Detector R&D

- Study of 200 µm modules
- Microcables or double metal fan-out
- Self-triggering performances
- Effective construction will begin in 2012

 Final decision on Super-B pending

Summary and Conclusions

- DAΦNE is at present the only world facility where low momentum kaon scattering studies can be performed
 - Missing data
 - Needed inputs for low energy strong interaction theories
- First feasibility studies performed: geometry, detector requirements, reaction kinematics, multiple scattering and energy loss effects, expected yields
 - Si Vertex-Detector + KLOE spectrometer & calorimeter
- Full know-how on Silicon Detectors, reduced R&D phase needed
 Re-use of some of FINUDA components
- The project (at present) involves the core part of the FINUDA collaboration (TS+TO+BA+LNF+BS)
 - Open to all external collaborations support by theoretical groups (Prague)
 - Agreement with KLOE for training/integration
 - First phase mostly dedicated to simulations
- Project time scale fitting to KLOE/DAΦNE schedule for the next 3-4 years