

LHCb experiment at LHC

Matteo Palutan for the Frascati LHCb group

- Introduction
- Data analysis at LNF

40th LNFSC meeting, June 24th 2010, Frascati

The LHCb experiment

Advantages of beauty physics at hadron colliders:

- High value of ~ bb cross sectionat LHC: $\sigma_{\rm bb}$ ~ 300-500 μb at 10-14 TeV
- Access to all quasi-stable b-flavoured hadrons

The challenge:

- Multiplicity of tracks (~30 tracks per rapidity unit)
- Rate of background events: $\sigma_{\rm bb}$ ~ 60 mb at Js=7 TeV

LHCb running conditions (nominal):

- defocused beams (w.r.t. ATLAS and CMS) \rightarrow max luminosity~ 2×10³² cm⁻²s⁻¹
- reduced pile-up: on average, 0.4 pp interaction/bunch crossing
- O(10¹¹) bb pair produced per fb⁻¹

Search for New Physics in CP violation and Rare Decays:

- + CPV: Φ_{s}, γ in trees and loops, CPV asymmetries in charm decays
- Rare decays: helicity structure in B \rightarrow K*µµ and B_s \rightarrow $\varphi\gamma,$ φee

FCNC in loops ($B_s \rightarrow \mu\mu$, $D \rightarrow \mu\mu$) and trees

Muon detector

2003: muon chamber (MWPC, GEM) production starts at LNF \rightarrow ~30% of the whole detector has been built here

after 5 years and 1380 chambers.

2009: Muon system is ready for data taking

Many thanks to ...

Detector installation: chambers, services

Chamber test

Front end electronics

2010: muon detector smooth operation

- only 2 gaps/5000 disconnected, 0.01% dead channels

- measured perfomances: ϵ >99% within 25ns, σ_t <=4ns, cluster size <1.2, aligned to <=1mm

$\overline{B^0} \rightarrow D^+ \pi^- + B^+ \rightarrow \overline{D^0} \pi^+$

Calibration of the B-field is ongoing

- 1) Muon chamber hardware efficiency maps
- 2) Offline muon identification: algorithm validation, efficiency, background
- 3) J/psi production cross section (->10pb⁻¹)
- 4) $B_s \rightarrow \mu^+ \mu^-$ (->200pb⁻¹)

- LNF analysis group: P. De Simone, G. Lanfranchi, M. Palutan, A. Sarti - 1) and 2) are under our responsibility - 3) and 4) in cooperation with flavor and rare decay WGs (G.L. as convener of $B_s \rightarrow \mu^+\mu^-$ WG) Muon chamber efficiency

Muon tracks selected from min bias events, with 4 out of 5 stations fired

Excellent data-MC agreement for M2-M5 (refining the method on M1 to suppress residual bkg on data)

(online monitor already in data-stream)

• Offline muon identification based on matching btw reconstructed tracks and hits in the muon station [LHCb-PUB-2009-013]

• First J/ψ observed on April 7, 2010 (1:30AM)

Work in progress:

• measure MuonID efficiency with tag and probe method \rightarrow LNF group • measure J/ ψ and $\psi(2s)$ production rate and polarization in pp collisions \rightarrow within the LHCb flavor working group

MuonID efficiency

Universal curve \rightarrow compute efficiency corrections for all analyses involving μ 's With present statistical accuracy, good agreement btw data and MC

(calibration stream AND online monitor already running)

Measurement of muon MisID

Excellent data/MC agreement (0.1-0.2%) This measurement is relevant to control background in rare decays with μ 's

J/psi analysis: motivations

- QCD test by measuring the J/ψ and $\psi(2s)$ production cross section and polarization in bins of p_T and rapidity (y);
- Use proper time to disentangle, for each bin, contributions from prompt J/ψ or J/ψ from B decays;
- Aims at 10% accuracy per bin in $0 < p_T < 12 \text{ GeV/c}$ and $2 < y < 4.5 \rightarrow 10-20 \text{ pb}^{-1}$ needed

Goals for ICHEP (15-100nb⁻¹): - $d\sigma/dp_T$ (all J/ψ) - J/ψ from B vs J/ψ prompt integrating over p_T , y

J/psi analysis: signal yield

~15 nb⁻¹ 4300 evts σ = 16MeV/c²

- Signal counts from mass fit in each ($p_{\rm T},y)$ bin: from 15 nb-1
- Efficiency: tracking, μ ID, trigger
- Background studies using sidebands and same-sign dimuon events (LNF group)

(dimuon stream prepared for the whole WG)

$B_s \rightarrow \mu^+ \mu^-$: analysis overview

GL

Same philosophy as Tevatron→ loose preselection, then classify events according to a 3D likelihood:

- 1. $\mu^+\mu^-$ invariant mass
- geometrical likelihood (GL): muon impact parameter, B lifetime, DOCA, isolation
- 3. μ identification

Control channels ($B_{(s)} \rightarrow hh'$) will be used to calibrate GL and invariant mass

Normalize to known B decay channels $(B_d \rightarrow K\pi, B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+)$ to derive BR:

$$BR(B_s) = BR(B^{norm}) \times \frac{N_{Bs}^{GL}}{N_{Bnorm}^{Tight}} \times \frac{\varepsilon_{Bnorm}^{REC}}{\varepsilon_{Bs}^{REC}} \times \frac{\varepsilon_{Bnorm}^{Sel|REC}}{\varepsilon_{Bs}^{Sel/REC}} \times \frac{\varepsilon_{Bnorm}^{Trig|Sel}}{\varepsilon_{Bs}^{Trig|Sel}} \times \frac{f_{Bnorm}}{f_{Bs}}$$

main systematics (~13%) from hadronization rate $f_{u,d}/f_s$

- \rightarrow extract f_d/f_s by measuring $B_d \rightarrow DK/B_s \rightarrow D_s \pi$ at LHCb (arXiv:1004.3982)
- \rightarrow normalize instead to B_s channel (better measurements needed)

Standard μ ID requires 2,3 or 4 hits (depending on track momentum) in M2,...,M5 stations in a large FOI around the extrapolated track.

How to improve µID

We're presently calibrating the muon likelihood on true muons from J/ψ and $\Lambda \rightarrow p\pi$ decays

$B_s \rightarrow \mu^+ \mu^-$: a first look at background

- A factor of >10⁴ more rejection power expected from geometrical likelihood: with present limited stat., preliminary studies ongoing on $K_S \rightarrow \pi\pi$ and D->K π
- Invariant mass resolution (MeV/c²):

LHCb prospects for $B_s \rightarrow \mu^+\mu^-$

Ongoing studies on data (very preliminary!) indicate that MC simulation is reliable

LHCb sensitivity (from MC):

with 0.1 fb⁻¹ we can improve the current best experimental limit
with 1 fb⁻¹ we expect to exclude BR up to 7×10⁻⁹ at 90% CL

- → LNF/LHCb group contributed substantially to the construction of the MUON detector: MWPC and GEM chambers (~1/3 of total), off-detector electronics, mechanical infrastructures, services, installation and full apparatus commissioning → huge effort from a very well motivated and highly experienced team of technicians, engineers and physicists
- Very active contribution to data taking and muon detector maintenance: run chief, muon piquet and data quality shifts attended
- Our goal now is giving a *comparable* contribution to data analysis!
- → We're responsible for:
 - muon chamber efficiency monitoring
 - offline muon ID validation, calibration and monitoring
- → We're deeply involved in:
 - measurement of J/psi production (preliminary results at ICHEP) search for $B_s \rightarrow \mu^+\mu^-$ (LHCb milestone)

...full integration with LHCb analysis WGs