ATLAS Experiment: The Analysis Activity of LNF Group

Claudio Gatti

Outline

- LNF Group Activity
- Data Preparation
- Commissioning with Cosmic Rays
- Measurement of W and Z Cross Sections
- Calibration and Performances with Physics Processes
- Search for New Heavy Gauge Bosons Z'→µµ
- Search for SM and MSSM Higgs Bosons
- Summary

The LNF Group Activity (I)

1. MDT Chambers

- Design
- R&D
- Assembly of 94 BML (Barrel Middle Large) for a total area of 600 m²
- Test beam data
- Installation and commissioning
- 2. LNF Tier 2
- 3. Fast Track: Hardware Track Finder for Atlas Trigger

The LNF Group Activity (II)

- 4. Data Preparation: filtering for the Atlas Muon Performance group
- 5. Muon Spectrometer Performances with Cosmic Rays
- 6. Detector Performances and Calibration with Physics Processes
 - Dimuons from J/ψ and Z (MC studies)
 - E_T^{Miss} reconstruction on MC and first data
- 7. Analysis (MC studies)
 - Measurement of pp \rightarrow Z \rightarrow µµ and pp \rightarrow W \rightarrow µv cross sections
 - Search for new heavy gauge bosons (Z')
 - Search for SM and MSSM higgs (H/h/A)

I will talk about this second part

ESD Muon throughput up to 40 MB/s
Muon-DESD throughput ~ 4 MB/s (1 MB/evt → 4 Hz)

DESD will be the only format distributed at T2's with hit/cells information LNF group responsible for filtering/monitoring/validating the muon stream

1. Set of Filters:

- Single and di-muons
- Isolated muons
- SA/CB/TAG/Calo
- 2. Cosmic rejection
- 3. Fake rejection

Simple selections Easy to monitor Bookkeeping Easy to configure

- Based on 60M cosmic-rays
- Most of cosmics from shafts
- Mostly vertical and triggered in barrel
- Runs both with B field on and off

- 1. Performance of precision and trigger chambers
 - single element efficiency
 - resolutions
 - noise rates
- 2. Calibration methods
- 3. Track reconstruction
- 4. Alignment and momentum resolution

Submitted to EPJC

Leading role of LNF in coordination and paper editing.

Optical alignment (absolute position)

Momentum Resolution

Alignment based on cosmic tracks with toroid off and solenoid on.

Ideal alignment/calibration

Measurement of $\sigma(pp \rightarrow W \rightarrow \mu \nu)$ and $\sigma(pp \rightarrow Z \rightarrow \mu \mu)$

Measurement of $\sigma(pp \rightarrow W \rightarrow \mu \nu)$ and $\sigma(pp \rightarrow Z \rightarrow \mu \mu)$

Full analysis on pseudo-data sample

- Signal selection
- Background subtraction and signal estimate
- Efficiency determination
- Impact of detector miscalibrations studied using pseudo data sample reconstructed with:
 - Misalignment of spectrometer from 50 to 500 μm
 - ID misalignments from 50 to 100 μm
 - Miscalibrated missing energy

Z and W: Background Estimation

Data-driven techniques to estimate QCD background shape

- 1. Isolated vs non isolated muons
- Same sign vs opposite sign dimuons
- 3. b-tagging variables

All methods tested on calibrated and miscalibrated pseudo-data samples

Z and W: Signal Extraction

- Fits with template histograms. QCD shapes extracted from pseudo-data samples.
- Fits return expected number of signal events within statistical error
- Good stability with cut variation.

Z and W: Impact of Miscalibrations

Smearing of p_T and E_T^{Miss} included to take into account miscalibrations

$$p_T^{new} = p_T^{old}(1 + g\Delta a p_T)$$

$$E_T^{Miss} = E_T^{Miss} m(1 + g\sigma\sqrt{\sum E_T})$$

g Gaussian number

Z and W: Efficiency Determination

Reconstruction and trigger efficiencies determined from $Z\rightarrow \mu\mu$ control sample.

- checks wrt MC truth
- checks on misaligned samples
- MC reweighting to obtain corrected efficiency
- all backgrounds included

Background larger source of systematics

Z and W: Expected Precision and Accuracy

δ effect (%)	$W \rightarrow \mu \nu$		$Z \rightarrow \mu\mu$		$R_{W/Z}$	
	stat	$_{ m syst}$	stat	$_{ m syst}$	stat	syst
acceptance	~ 0	1.2	~ 0	2.0	~ 0	2.6
tag-and-probe	-	0.1	-	0.7	-	0.7
efficiency	0.5	1.6	0.6	1.2	0.8	0.4
fit yield	0.5	0.4	1.4	0.7	1.4	0.8
μ scale/resol	-	1.0	-	1.0	-	1.4
E_T scale/resol	-	1.0	-	-	-	1.0
stability	-	0.8	-	1.3	-	1.0
totals	0.7	2.6	1.5	3.0	1.6	3.5
	2.7		3.4		3.8	
luminosity	10		10		-	

- Theoretical error on acceptances 1-2%
- Efficiency affected up to 1.5% by background contamination
- Partial cancellation of systematic effects in the ratio of counted events
- Large cancellation (5→1%) of theoretical error in ratio of cross sections

Z and W Observation with First Data

40 W candidates and 2 Z candidates observed with about 7 nb⁻¹

Need a factor 1000 luminosity for a measurement at % level

Calibration and Performances with Physics Processes

E_TMiss: Energy-Flow Method

The projection of E_T^{Miss} along boson direction sensitive to unbalance between hadronic recoil and muons.

Developed an energy-flow algorithm combining track and calorimeter information. Substantial improvement in $\mathsf{E}_\mathsf{T}^\mathsf{Miss}$ linearity and resolution.

E_TMiss: Energy-Flow Method

Better calibration and resolution also of ΣE_T Improved agreement data/MC, good for W analysis

Calibration and Monitoring with $Z \rightarrow \mu\mu$

Exploit Z mass constraint to calibrate momentum scale at tower level.

Test with large miscalibrations

- shifts 1mm
- rotations 1 mrad

L~100 pb⁻¹

Before calibration
After calibration
Ideally calibrated detector

Calibration and Monitoring with $Z \rightarrow \mu\mu$

Use the new calibrated momenta to monitor the momentum linearity in the MS.

Search for Exotics and Higgs

Impact of Miscalibrations on Discovery Potential of $Z' \rightarrow \mu\mu$

The impact of several detector misalignments on Z' discovery have been studied:

- MS random misalignments O(50→500 μm)
- ID random misalignments O(50→100 μm)
- ID "weak modes"

Study with large misalignments to check robustness of reconstruction.

$500~\mu m$ misalignments in MS impact on SA muon resolution

ID "weak modes"

Charge inversion due to large weak mode

Impact of Miscalibrations on Discovery Potential of Z' $\rightarrow \mu\mu$

Large inefficiency, observed in combining ID and MS tracks, reflects on trigger efficiency.

Cured by taking into account the alignment uncertainty in the error matrix.

Impact of Miscalibrations on Discovery Potential of Z' $\rightarrow \mu\mu$

pp→bbh/A→bbμμ

$\overline{tan\beta}$	45
,	110 GeV
$m_{A/h}$	$300 \; \text{fb}^{-1}$
⊥ / −	
\sqrt{S}	14 TeV

- MC study for discovery of MSSM h/A bosons in the large $tan\beta$ region and mass close to 100 GeV.
- Large pp→bbZ→bbμμ background (control samples from Z→ee decays)
- Select 2 muons (p_T>10 GeV) + 2 jets (≥1 b-jet)

Possible discovery with large $tan\beta$ with L=10 fb⁻¹ @ 14 TeV

$pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\mu$

L=30 fb-1 @ 14 TeV

Background from ZZ* continuum: $\sigma(pp \rightarrow ZZ \rightarrow 4 \text{ leptons}) = O(100 \text{ fb})$ $\sigma(pp \rightarrow H \rightarrow 4 \text{ leptons}) = O(1-10 \text{ fb})$

Summary

