SND@LHC

Bologna, 2021May7

80

390

SND@LHC è un esperimento senza uguali per la fisica con neutrini

SND@LHC sonderà la regione inesplorata tra 350 GeV e 3 TeV

Il programma di fisica è complementare ai grandi esperimenti di LHC

	CC neutrino interactions		NC neutrino interactions	
Flavour	$\langle E \rangle ~(GeV)$	Yield	$\langle E \rangle (GeV)$	Yield
$\overline{ u_{\mu}}$	450	730	480	220
$ar{ u}_{\mu}$	485	290	480	110
$ u_e$	760	235	720	70
$ar{ u}_e$	680	120	720	44
$ u_{ au}$	740	14	740	4
$ar{ u}_{ au}$	740	6	740	2
TOT		1395		450

Previsione per LHC RUN3 (2022-2024):

alcune delle misure garantite:

studio rapporto nu_e/nu_mu studio rapporto NC/CC osservazione nu_tau di alta energia

FUTURO: LHC RUN4 (2027 e oltre): emulsioni -> silicon tracker

emulsioni —> silicon tracker alcune migliaia di nu_tau un secondo detector a 4<eta<5 per nu da W ?

apertura della sigla INFN per SND@LHC nella CSN1 di Maggio

A Bologna piccolo gruppo misto con colleghi di gruppo 1, 2 e 5 a tempo parziale

- Attività: progettazione e costruzione muon planes (con Zurigo, Berlino, Mainz): scintillatori e SiPM; granularità 1 cm2; IN CORSO; installazione in LHC a fine anno
 - scan delle emulsioni (aggiornamento microscopio ex-OPERA);
 tavoli di scan in parallelo (CERN, Napoli, Bologna, Zurigo, Russia);
 IN PREVISIONE dal 2022

Colleghi di Bologna sono benvenuti!

La presa dati comincia nel 2022: la preparazione per l'analisi deve partire adesso

Opportunità di investire parte del proprio tempo in un esperimento a dimensione di test beam ma con potenzialità di misure di grande visibilità nel panorama di HEP

contattare: marco.dallavalle@bo.infn.it

Analisi da cominciare a impostare a Bologna sin dalla corrente fase di partenza dell'esperimento, e poi da portare avanti con la presa dati:

1) misura della sezione d'urto pp->v+X per i neutrini di e, μ , τ

online - DAQ: come accedere alla misura della luminosità da ATLAS,
 come monitorare lo stato dei fondi e della performance del rivelatore elettronico.
 Il controllo della DAQ è remoto, non richiede personale specializzato in situ.

2) spettro dei neutrini muonici (e similmente per elettronici) e studio della topologia degli eventi C.C. all'energia del TeV

algoritmo on- and off-line di selezione col rivelatore elettronico, ricostruzione della traccia (sciame), simulazione (solo camere a mu inizialmente, e poi camere calo, camere SciFi, camere di veto per la separazione dal fondo di mu da LHC)

3) selezione e studio degli eventi di ν_{tau}

 scan delle emulsioni e misura degli eventi. Alle energie del TeV il tau percorre ~ 5 cm !
 Riprendere il know-how di OPERA e aggiornare il microscopio.

altro

Cournal of Physics C: Nuclear and Particle Physics

J. Phys. C: Nucl. Part. Phys. 45 (2019) 115300 (19cp)

https://doi.org/10.1000/1001-6471/sb0f7c

Physics potential of an experiment using LHC neutrinos

N Beni¹, M Brucoli²⁰, S Buontempo⁵, V Cafaro⁴, G M Dallavalle^{4,8}⁰, S Danzeca², G De Lellis^{2,3,5}, A Di Crescenzo^{3,5}, V Giordano⁴, C Guandalini⁴, D Lazic⁴, S Lo Meo⁷, F L Navarrla⁴ and Z Szillasi^{1,2}

¹ Hungarian Academy of Sciences, Inst. for Nuclear Research (ATOMKI), Debrecen, Hungary

²CERN, CH-1211 Geneva 23, 8witzerland

² Dipartimento di Fisica E. Pancini, Università Federico II, Naples, Italy

"INFN sezione di Bologna and Dipartimento di Fisica dell' Università, Bologna, Italy

⁵ INFN sezione di Napoli, Naples, Italy

⁶ Boston University, Department of Physics, Boston, MA 02215, United States of America

²INFN sezione di Bologna and ENEA Research Centre E. Clementel, Bologna, Italy

E-mail: marco.dallavalle@cern.ch

Received 24 April 2019, revised 14 August 2019 Accepted for publication 29 August 2019 Published 11 October 2019

Abstract

Neutrinos are abundantly produced in the LHC. Flavour composition and energy reach of the neutrino flux from proton-proton collisions depend on the pseudorapidity η . At large η , energies can exceed the TeV, with a sizeable contribution of the τ flavour. A decicated detector could intercept this intense neutrino flux in the forward direction, and measure the interaction cross section on nucleons in the unexplored energy range from a few hundred GeV to a few TeV. The high energies of neutrinos result in a larger ν N interaction cross section, and the detector size can be relatively small. Machine backgrounds vary rapidly while moving along and away from the beam line. Four locations were considered as hosts for a neutrino detector, the CMS quadrupole region (25 m from CMS Interaction Point (IP)), UJ53 and UJ57 (90 and 120 m from CMS IP), RR53 and RR57 (240 m from CMS IP). TH18 (480 m from ATLAS IP). The potential sites are studied on the basis of (a) expectations for neutrino interaction rates, flavour composition and

Author to whom correspondence should be addressed.

Criginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI

0554-3989/19/115008+18\$33.00 © 2019 OP Publishing 18. Primed in the UK

Figure 2. Scatter plot of neutrino energy versus pseudorapidity η in b and c decays. All neutrino flavours are included.

Figure 3. Scatter plot of neutrino energy versus pseudorapidity η in pp events with W production. Neutrinos from the leptonic W decays are seen to be kinematically well separated. All neutrino flavours are included.

OPEN ACCESS

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)

https://doi.org/10.1088/1361-6471/aba7ad

Further studies on the physics potential of an experiment using LHC neutrinos

N Beni^{1,2}, M Brucoli², V Cafaro³, T Camporesi², F Cerutti², G M Dallavalle^{3,*}, S Danzeca², A De Roeck², A De Rújula⁴, D Fasanella², V Giordano³, C Guandalini³, A Ioannisyan^{2,5}, D Lazic⁶, A Margotti³, S Lo Meo^{3,7}, F L Navarria³, L Patrizii³, T Rovelli³, M Sabaté-Gilarte^{2,8}, F Sanchez Galan², P Santos Diaz², G Sirri³, Z Szillasi^{1,2} and C-E Wulz⁹

¹ Hungarian Academy of Sciences, Inst. for Nuclear Research (ATOMKI), Debrecen, Hungary

² CERN, CH-1211 Geneva 23, Switzerland

³ INFN sezione di Bologna and Dipartimento di Fisica dell' Università, Bologna, Italy

⁴ Inst. de Estructura de la Materia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain

⁵ A.Alikhanyan National Science Laboratory, Yerevan Physics Institute, Yerevan, Armenia

⁶ Boston University, Department of Physics, Boston, MA 02215, United States of America

⁷ ENEA Research Centre E. Clementel, Bologna, Italy

⁸ Universidad de Sevilla, Spain

⁹ Institute of High Energy Physics of the Austrian Academy of Sciences, and Vienna University of Technology, Vienna, Austria

E-mail: Marco.Dallavalle@cern.ch

Received 20 April 2020, revised 8 July 2020 Accepted for publication 20 July 2020 Published 4 November 2020

Abstract

We discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni *et al* (2019 *J. Phys. G: Nucl. Part. Phys.* **46** 115008), the detector can be installed in the decommissioned TI18 tunnel, \approx 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. The detector intercepts the intense

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.