Panoramica processo r

Samuel A. Giuliani

European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento)

23rd April 2021

 $n_{-}TOF$ Meeting

The *r* process

B²FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

r(apid neutron capture) process: $au_{(n,\gamma)} \ll au_{eta^-}$

• How far can the *r* process proceed? Number of free neutrons that seed nuclei can capture (neutron-to-seed ratio).

- Where does fission occur?
- How much material accumulates in fissioning region?
- What are the fission yields?

Introduction	DFT and r process	Conclusions
00	●0000000000	00

Fission and *r* process

• Fission plays a crucial role during the *r*-process nucleosynthesis

Thielemann+(1983), Panov+(2005), Martinez-Pinedo+(2007), Korobkin+(2012), Petermann+(2012), Eichler+(2015), Gorielv(2015), Mumpower+(2018), Vassh+(2019), . . .

- Many models are parametrizations/phenomenological \rightarrow validity far from stability?
- Long-term goal: compute reaction rates and fission properties from consistent (EDF) nuclear input.

Introduction 00	DFT and r process	Conclusions

1) Compute fission properties and binding energies using EDF.

2) Calculate stellar reaction rates from Hauser-Feshbach theory.

3) Obtain *r*-process abundances using network calculations.

The Hartree-Fock-Bogolyubov (HFB) formalism

The ground-state wavefunction is obtained by minimizing the total energy:

 $\delta E[|\Psi\rangle] = 0\,,$

where $|\Psi\rangle$ is a quasiparticle (β) vacuum:

$$|\Psi\rangle = \prod_{\mu} \beta_{\mu} |0\rangle \quad \Rightarrow \quad \beta_{\mu} |\Psi\rangle = 0 \,.$$

The energy landscape is constructed by constraining the deformation of the nucleus $\langle \Psi(q) | \hat{Q} | \Psi(q) \rangle = q$:

$$E[|\Psi(q)\rangle] = \langle \Psi(q)|\hat{\mathcal{H}} - \lambda_q \hat{Q}|\Psi(q)\rangle.$$

The energy density functionals (EDF) provide a phenomenological ansatz of the effective nucleon-nucleon interaction:

- Barcelona-Catania-Paris-Madrid (BCPM);
- Skyrme and Gogny interactions;
- relativistic EDF.

Introduction	DFT and r process	Conclusions
00	0000000000	00

Compound reactions

Reaction rates computed within the Hauser-Feshbach statistical model.

- Based on the Bohr independence hypothesis: the decay of the compound nucleus is independent from its formation dynamics.
- BCPM nuclear inputs implemented in TALYS reaction code to compute *n*-induced fission and *n*-capture stellar rates.

Cross sections from BCPM

Results: BCPM vs FRDM+TF vs HFB14

SAG et al., PRC 102, 045804 (2020)

Results: BCPM vs FRDM+TF vs HFB14 sag

SAG et al., PRC 102, 045804 (2020)

BCPM: Giuliani et al. (2018); FRDM+TF:Panov et al. (2010); HFB14: Goriely et al. (2009).

-4

185 205 225

Results: BCPM vs FRDM+TF vs HFB14 SAG et al., PRC 102, 045804 (2020)

Kilonova: BCPM vs FRDM+TF vs HFB14

- HFB14:
 - Large accumulation of ²⁵⁴Cf due to high fission barriers.
- FRDM+TF:
 - 254 Cf progenitors destroyed by β -delayed fission.
- BCPM:
 - ²⁵⁴Cf progenitors destroyed by neutrons from fission.

Kilonova light curves sensible to neutron-rich A = 254 nuclei

 (n,γ) vs (n, fis)

 $\beta\text{-delayed}$ and spontaneous fission rates

Kilonova: BCPM vs FRDM+TF vs HFB14

- HFB14:
 - Large accumulation of ²⁵⁴Cf due to high fission barriers.
- FRDM+TF:
 - 254 Cf progenitors destroyed by β -delayed fission.
- BCPM:
 - ²⁵⁴Cf progenitors destroyed by neutrons from fission.

Kilonova light curves sensible to neutron-rich A = 254 nuclei

$$(n,\gamma)$$
 vs (n, fis)

 $\beta\text{-delayed}$ and spontaneous fission rates

Experimental (n, fis) cross sections

Credit: NuDat 2.8 (https://www.nndc.bnl.gov/nudat2/)

Evolution of $\sigma_{n,f}$ ($E_n \sim 100 \text{ keV}$) with isospin asymmetry?

Fission yields and r process

Fission fragments distributions can substantially impact *r*-process abundances distributions (Panov+2008, Goriely+2013, Eichler+2015, Vassh+2018, Lemaître+2021...).

Ffds: Theory vs Experiment

- Models agree with experimental data close to stability.
- Larger discrepancies for increasing mass number:
 - BSM (Mumpower+(2020)) broad distributions not supported by data.
 - SPY2 (Lemaître+(2019)) large discrepancies for Fm isotopes.

OES in exotic nuclei

J. Sadhukhan, SAG, W. Nazarewicz (submitted)

• Larger discrepancies with BSM and SPY2 for more exotic nuclei.

Excursus: β -decay studies

in collaboration with S. Taioli

Table 1: β -decay half-live (in ms) predicted by FRDM (Moller+ PRC2003) and D3C* (Marketin+ PRC2016)

Introduction	DFT and r process	Conclusions
00	0000000000	●○

Conclusions & Outlook

- Fission plays a crucial role during strong *r*-process nucleosynthesis.
- Systematic studies are required to understand the impact on abundances and kilonova light curves.
- Experimental data is required to validate/calibrate theoretical models:
 - (n, γ) vs (n, fis) cross sections;
 - β -delayed and spontaneous fission rates;
 - fission fragment distributions;
 - evolution with isospin asymmetry.

• Region around $A\sim 254$ particularly important for kilonova observations.

Collaborators and founding

Y. Cao

MSU & NSCL/FRIB (East Lansing)

E. Flynn R. Jain

D. Lay

W. Nazarewicz

L. Neufcourt

GSI/TUD (Darmstadt)

UNIVERSITÄT G. Martínez Pinedo

UAM niversidad Autónoma de Madrid

L. M. Robledo

VECC (Kolkata)

UAM (Madrid)

J. Sadhukhan

Sinica Institute (Taiwan)

con il contributo di

M.-R. Wu

EVEROPEAN CENTRE FOR THEORETICAL STUDIES INNUCLEAR PHYSICS AND RELATED AREA NUNCLEAR PHYSICS AND RELATED AREA

