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Introduction DFT and r process Conclusions

The r process B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

r(apid neutron capture) process: τ(n,γ) � τβ−
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• How far can the r process proceed? Number of free neutrons that seed
nuclei can capture (neutron-to-seed ratio).
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r process and fission
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For large neutron-to-seed ratio
fission is unavoidable.

I Where does fission occur?
I How much material accumulates in fissioning region?
I What are the fission yields?
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Fission and r process

• Fission plays a crucial role during the r-process nucleosynthesis
Thielemann+(1983), Panov+(2005), Martinez-Pinedo+(2007), Korobkin+(2012), Petermann+(2012),

Eichler+(2015), Goriely(2015), Mumpower+(2018), Vassh+(2019). . .

M. Eichler et al., Astrophys. J. 808, 30 (2015).

Figure 1. Final abundances of the integrated ejecta around the second and third peak for an NSM Korobkin et al. 2012; Rosswog et al. 2013 at a simulation time

10 s, employing the FRDM mass model combined with four different ssion fragment distribution models see the text . For reasons of clarity the results are
presented in two graphs. The abundances for Th and U are indicated by crosses. In the left-hand panel the lower crosses belong to the Panov et al. 2008 model
dashed line , while the lower crosses in the right-hand panel belong to the ABLA07 distribution model dashed line . The dots represent the solar -process
abundance pattern Sneden et al. 2008

Figure 2. Fission rates at 1 s in s for -delayed and neutron-induced ssion at freeze-out from equilibrium for one representative trajectory
when utilizing the FRDM mass model and Panov et al. 2010 ssion rates. : Corresponding ssion fragment production. The distribution model here is ABLA07.

The Astrophysical Journal, 808:30 13pp , 2015 July 20 Eichler et al. M.-R. Wu et al., Phys. Rev. Lett. 122, 062701 (2019)

• Many models are parametrizations/phenomenological → validity far from
stability?

• Long-term goal: compute reaction rates and fission properties from consistent
(EDF) nuclear input.
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1) Compute fission properties and binding energies using EDF.
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2) Calculate stellar reaction rates from Hauser-Feshbach theory.
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3) Obtain r-process abundances using network calculations.
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The Hartree-Fock-Bogolyubov (HFB) formalism
The ground-state wavefunction is obtained by minimizing the total energy:

δE [|Ψ〉] = 0 ,

where |Ψ〉 is a quasiparticle (β) vacuum:

|Ψ〉 =
∏
µ

βµ|0〉 ⇒ βµ|Ψ〉 = 0 .

The energy landscape is constructed by constraining the deformation of the
nucleus 〈Ψ(q)|Q̂|Ψ(q)〉 = q:

E [|Ψ(q)〉] = 〈Ψ(q)|Ĥ − λqQ̂|Ψ(q)〉 .

The energy density functionals (EDF) provide a phenomenological ansatz of the
effective nucleon-nucleon interaction:

- Barcelona-Catania-Paris-Madrid (BCPM);
- Skyrme and Gogny interactions;
- relativistic EDF.
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Compound reactions
Reaction rates computed within the Hauser-Feshbach statistical model.

compound
nucleus

target

γ gamma
decay

particle
emission

fission

• Based on the Bohr independence hypothesis: the decay of the compound
nucleus is independent from its formation dynamics.

• BCPM nuclear inputs implemented in TALYS reaction code to compute
n-induced fission and n-capture stellar rates.
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Cross sections from BCPM
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Results: BCPM vs FRDM+TF vs HFB14 SAG et al., PRC 102, 045804 (2020)
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BCPM: Giuliani et al. (2018); FRDM+TF:Panov et al. (2010); HFB14: Goriely et al. (2009).
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Results: BCPM vs FRDM+TF vs HFB14 SAG et al., PRC 102, 045804 (2020)
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Results: BCPM vs FRDM+TF vs HFB14 SAG et al., PRC 102, 045804 (2020)
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Kilonova: BCPM vs FRDM+TF vs HFB14

• HFB14:
- Large accumulation of 254Cf due

to high fission barriers.
• FRDM+TF:

- 254Cf progenitors destroyed by
β-delayed fission.

• BCPM:
- 254Cf progenitors destroyed by

neutrons from fission.

SAG et al., Phys. Rev. C 102, 045804 (2020)
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Experimental (n, fis) cross sections

Credit: NuDat 2.8 (https://www.nndc.bnl.gov/nudat2/)

Evolution of σn,f (En ∼ 100 keV) with isospin asymmetry?
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Fission yields and r process

Fission fragments distributions can substantially impact r-process abundances
distributions (Panov+2008, Goriely+2013, Eichler+2015, Vassh+2018, Lemâıtre+2021. . . ).

N. Vassh et al., Astrophys J. 896, 28 (2020)
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Ffds: Theory vs Experiment J. Sadhukhan, SAG, W. Nazarewicz (submitted)
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• Models agree with experimental
data close to stability.

• Larger discrepancies for increasing
mass number:

- BSM (Mumpower+(2020)) broad
distributions not supported by
data.

- SPY2 (Lemâıtre+(2019)) large
discrepancies for Fm isotopes.
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OES in exotic nuclei J. Sadhukhan, SAG, W. Nazarewicz (submitted)
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• Larger discrepancies with BSM and SPY2 for more exotic nuclei.
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Excursus: β-decay studies in collaboration with S. Taioli
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194Er 196Er 242Hg 278Pu

FRDM 50.15 60.64 30.09 32.47
D3C* 26.79 12.69 1.32 0.46

Table 1: β-decay half-live (in ms) predicted by FRDM (Moller+ PRC2003) and D3C* (Marketin+ PRC2016)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.67.055802
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.93.025805
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Conclusions & Outlook

• Fission plays a crucial role during strong r-process nucleosynthesis.
• Systematic studies are required to understand the impact on abundances and

kilonova light curves.
• Experimental data is required to validate/calibrate theoretical models:

- (n, γ) vs (n,fis) cross sections;
- β-delayed and spontaneous fission rates;
- fission fragment distributions;
- evolution with isospin asymmetry.
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• Region around A ∼ 254 particularly important for kilonova observations.
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