The MEG II Experiment: status and perspective

Luca Galli, INFN Sezione di Pisa ZOOM 29-04-2021 (on behalf of the MEG collaboration)

Istituto Nazionale di Fisica Nucleare

Outlook

- Quick overview of cLFV (with muons)
 - highly sensitive to physics beyond the standard model
 - comparison between different channels
- MEG II experiment
 - overview
 - status
- Conclusions

| → |' + X (X = γ, "", ee, µµ, others...)

$$\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U^{\perp}_{ei} \frac{\Delta m^2_{i1}}{M^2_W} \right|^2 \simeq 10^{-54}$$

too small to be experimentally accessible → portal to New Physics extensively exploited in intensity frontier searched SM background free searches!

70 years of searches

ZOOM, 29-04-2021

L. Galli, INFN Pisa

μ as a golden channel

New physics* couplings

dipole transition $\mu \rightarrow e\gamma$ favoured

four particle interaction $\mu N \rightarrow e N, \mu \rightarrow e e e favoured$

Calibbi and Signorelli, Riv. N. Cimento, 2017

*Model independent approach

L. Galli, INFN Pisa

New physics* couplings

*Model independent approach

Calibbi and Signorelli, Riv. N. Cimento, 2017

ZOOM, 29-04-2021

L. Galli, INFN Pisa

Effective parametrisation

de Gouvea and Vogel, Prog. Part. Nucl. Phys. 2013

effective Lagrangian

- function of the NP scale Λ and NP nature through κ
 - dipole transition
 - BR(μ -> eγ)/BR(μN->eN)≈10⁻²
 - four fermion interaction

μN->eN favoured

From current and future experiments 10³ TeV new physics scale sensitivity

	current limit	future limit
μ->eγ	4.2×10 ⁻¹³	6x10 ⁻¹⁴
µN->eN	10 ⁻¹² - 10 ⁻¹³	6x10 ⁻¹⁷
µ->eee	10-12	10 ⁻¹⁵ - 10 ⁻¹⁶

Comparison* with g-2 experiment

- 3.4 σ discrepancy w.r.t. Standard Model prediction
 - possible hint of new physics
 - this would enhance to μ->eγ for example in a supersymmetric model
 - cLFV coupling |δ_{LL}¹²|² ≈ 10⁻⁴
 almost excluded
- resolution improvements by a factor 4 from future experiments at Fermilab and J-PARC
 - together with **new generation** cLFV experiments will be sensitive to $|\delta_{LL}^{12}|^2 \approx 10^{-5}$

*Model dependent

Muon cLFV: kinematics

 $\mu^{-}N \rightarrow e^{-}N$

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ

 $\rightarrow e^{+}\gamma$

Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Muon cLFV: background

 $\mu^{-}N \rightarrow e^{-}N$

- 2-body decay
- Monoenergetic e^+ , γ

 $\rightarrow e^+\gamma$

Back-to-back

Background

Accidental background

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected
 Background
 - Decay in orbit
 - Antiprotons, pions

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$ Background
 - Radiative decay
 - Accidental background

Muon cLFV: beam line

Muon cLFV: beam line

Muon cLFV: beam line

Searching for $\mu \rightarrow e\gamma$

The MEG II experiment @PSI

MEG II experiment

- Continuation of MEG
- Reuse as many as possible knowhow and infrastructures
 - magnet
 - gamma-ray detector cryostat, LXe and PMTs
 - calibration tools
- Goal: increase the sensitivity by about 1 order of magnitude by pushing the experiment at its limit

Signal and background

μ ⁺ γ	γ γ ν _μ	v_{e} v_{μ}
${ m E}_{\gamma}=52.8{ m MeV}$	$E_{\gamma} < 52.8 \text{ MeV}$	$E_{\gamma} < 52.8 \text{ MeV}$
$\mathrm{E_{e^+}} = 52.8~\mathrm{MeV}$	$\rm E_{e^+} < 52.8~MeV$	$\mathrm{E_{e^+}} < 52.8~\mathrm{MeV}$
$\Theta_{\mathrm{e}\gamma} = 180^{\circ}$	$\Theta_{ m e\gamma} < 180^{\circ 1}$	$\Theta_{ m e\gamma} < 180^{\circ}$
$T_{e\gamma} = 0 s$	$T_{e\gamma} = 0 s$	$T_{e\gamma} \Rightarrow flat$

Accidental background is dominant and determined by beam rate and resolutions

 $B_{acc} \propto R_{\mu} \Delta E_e \Delta E_{\gamma}^2 \Delta \Theta_{e\gamma}^2 \Delta t_{e\gamma}$

 $B_{RMD} \approx 0.1 \cdot B_{acc}$

Keywords

(1) thin: "low" energy

(2) **fast**: high rate \iff high intensity frontier

(3) **stable**: precision measurement \iff background rejection

MEG solutions

- . **µ beam stopped** on a 205µm polyethylene target (1)
- . non uniform solenoidal magnetic field (2)
- . tracking with **ultra-thin DC** (1) and timing with **plastic scintillators** (2)
- . γ detection with **LXe scintillator** (1+2)

. complete and redundant calibration techniques (3)

Experimental approach

A. M. Baldini et al, The design of the MEG II experiment EPJC, 2018

Sensitivity to the limit

1. Increasing μ -stop on target

е

- 2. **Reducing** target **thickness** to minimise e+MS & bremsstrahlung and use a more **robust** one
- 3. **Replacing** the **e+tracker** reducing its radiation length and **improving** its **granularity** and **resolution**
- 4. Improving the timing counter granularity for better timing and reconstruction
- 5. **Improving** the **e+ tracking-timing integration** by measuring the e+ trajectory up to the TC interface
- 6. Extending γ-ray detector acceptance
- Improving the γ-ray energy and position resolution for shallow events
- 8. Integrating splitter, trigger and DAQ maintaining high bandwidth

Calibration systems (a subset...)

INFN

Istituto Nazionale di Fisica Nucleare

Relevant example

 $|B_{acc} \propto R_{\mu} \Delta E_e \Delta E_{\gamma}^2 \Delta \Theta_{e\gamma}^2 \Delta t_{e\gamma}$

γ energy scale **before** and **after** calibration

uncertainty less than 0.5%

Data analysis

- Decided to extract CL to B(μ→eγ) from a likelihood analysis in a wide signal box
- Each event is described in terms of 5 kinematic variables
 - $x_i = (E_{\gamma}, E_e, t_{e\gamma}, \varphi_{e\gamma}, \vartheta_{e\gamma})$
- resolutions and PDFs evaluated on data outside the signal box
 - signal box **closed** until **analysis is fixed**
- Use of **sidebands**
 - accidental background from Left and Right sidebands
 - **Radiative Muon Decay** (RMD) studied in the **E_y sideband**

MEG result: milestone for MEG II

Other results from MEG

Eur. Phys. J. C (2016) 76:108 DOI 10.1140/epic/s10052-016-3947-6 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Measurement of the radiative decay of polarized muons in the MEG experiment

The MEG Collaboration

A. M. Baldini^{1a}, Y. Bao³, E. Baracchini^{5,16}, C. Bemporad^{1a,1b}, F. Berg^{3,4}, M. Biasotti^{6a,6b}, G. Boca^{7a,7b}, P. W. Cattaneo^{7a}, G. Cavoto^a, F. Cei^{1a,1b}, G. Chiarello^{6a,8b}, C. Chirl^{6a,6b}, A. de Barl^{7a,7b}, M. De Gerone^{6a}, A. D'Onofrio^{1a,1b}, S. Dussoni^{1a}, Y. Fuji⁵, L. Galli^{1a}, F. Gatti^{6a,6b}, F. Grancagnolo^{6a}, M. Grassi^{1a}, A. Graziosi^{9a,9b}, D. N. Grigoriev^{10,11,12}, T. Haruyama¹³, M. Hildebrandt¹, Z. Hodge¹⁴, K. Ieki¹³, F. Ignatov^{10,12}, T. Ivamoto⁵, D. Kaneko⁵, Tae Im Kang¹⁴, P.-R. Kettle¹, B. I. Khazin^{10,12}, N. Khomutov¹⁵, A. Korenchenko¹⁵, N. Kravchuk G. M. A. Lim¹⁴, S. Mihara¹³, W. Molzon¹⁴, Toshinori Mori⁵, A. Mtchellishvili¹, S. Nakaura⁵, D. Nicol^{1a,11}, J. Nicol^{1a,11}, J. Nicol^{1a,10}, J. Nicol^{1a,11}, J. Nicol^{1a,11}, J. Nicol^{1a,11}, J. Nicol^{1a,10}, J. Nicol¹⁴, J. Nich¹⁴, J. Mihara¹⁵, W. Okozon¹⁵, W. Denaros⁵, W. Denaros⁵, J. P. A. A. Panjan^{6a,20}, J. Panaros^{14,20}, J. Panaros^{14,20}

Eur. Phys. J. C (2016) 76:223 DOI 10.1140/epje/s10052-016-4047-3 Regular Article - Experimental Physics

THE EUROPEAN CrossMark PHYSICAL JOURNAL C

Muon polarization in the MEG experiment: predictions and measurements

The MEG Collaboration

CrossMark

A. M. Baldini^{4a}, Y. Bao¹, E. Baracchini^{3,15}, C. Bemporad^{4a,4b}, F. Berg^{1,2}, M. Biasotti^{8a,4b}, G. Boca^{6a,6b}, P. W. Cattaneo^{6a}, G. Cavoto^{7a}, F. Cel^{4a,4b}, a G. Chiarello^{12a,12b}, C. Chirl^{12a}, A. De Bar^{4a,6b}, M. De Gerone^{6a}, A. D'Onofrio^{4a,4b}, S. Dusson^{4a}, Y. Fujit³, L. Galli^{4a}, F. Gatti^{8a,6b}, F. Grancagnolo^{12a}, M. Grassi^{4a}, A. Graziosi^{7a,7b}, D. N. Grigoriev^{1,13,14}, T. Haruyama¹⁰, M. Hildebrandt¹, Z. Hodge^{1,2}, K. Iekl^{1,3}, F. Ignatov^{3,14}, T. Iwamoto³, D. Kaneko³, T. I. Kang², P.-R. Kettle¹, B. I. Khazin^{5,14}, N. Khomutov¹¹, A. Korenchenko¹¹, N. Kravchuk¹¹, G. M. A. Lim⁵, S. Mihara¹⁰, W. Molzos⁵, Toshinori Mori³, A. Michellishvill¹, S. Nakaura³, D. Nicol^{4a,4b}, W. Nickinov¹¹, M. Nickinov¹², C. Denzel, W. Octarel³, M. Danzeng¹², J. Panel A. Denlen¹², J.²D

Eur. Phys. J. C (2020) 80:858 https://doi.org/10.1140/epjc/s10052-020-8364-1	
Pegular Article Experimental Physics	

Search for lepton flavour violating muon decay mediated by a new light particle in the MEG experiment

The MEG Collaboration

A. M. Baldini^{1a}, F. Berg^{2,3}, M. Biasotti^{4a,4b}, G. Boca^{5a,5b}, P. W. Cattaneo^{5a}, G. Cavoto^{6a,6b}, F. Cei^{1a,1b}, M. Chiappini^{1a,1b}, G. Chiarello^{6a,6b}, C. Chiri^{7a,7b}, A. Corvaglia^{7a,7b}, A. de Bar^{5a,5b}, M. De Gerone^{4a}, M. Francesconi^{1a}, L. Galli^{1a}, F. Gatti^{4a,4b}, F. Grancagnolo^{7a}, M. Grassi^{1a}, D. N. Grigoriev^{5,9,10}, M. Hildebrandt², iodoge^{2,3}, K. Icki¹¹, F. Ignatov^{3,10}, R. Iwa¹¹, T. Iwamoto¹¹, S. Kobayahi¹¹, P. K. Ketle², W. Kyle¹², Knomutov¹³, A. Kolesnikov¹³, N. Kravchuk¹³, N. Kuchinskiy¹³, T. Libeiro¹², G. M. A. Lim¹², V. Malyshev¹³,

MEG II commissioning

LXe detector

Same detector as MEG

homogenous

• LXe as scintillator

- bright: 40 photons/keV
- fast: 4/22/40 ns
- VUV MPPC replacing PMTs in the inners face
 - 4192 channels instead of 216!!
 - uniform response in particular for shallow events

Performance improvement

Performance improvement

Precise MPPC position needed... at LXe temperature!

X-ray alignment

LXe inner face radiography

- direct measurement of MPPC position
- collimated ⁵⁷Co source on movable support (124 and 136 keV)
 - 1.2x4 mm² beam
 - scan by 1mm (half of MMPC)

First gamma-rays in 2017

CEX run in November 2020 Istituto Nazionale di Fisica Nucleare

E_{xEC} vs E_{BGO}

 $\pi^0 \rightarrow \gamma \gamma$ events

L. Galli, INFN Pisa

Etheory[MeV]

Preliminary

E_{XEC}[MeV]

Drift chamber

- single volume DC
- He-Isobuthane (90-10) low mass gas mixture (+ addition 1* isopropilic alcohol and ~0.5% oxygen or less)
 - 2 x 10⁻³ radiation length per track
- **1728 anode** wires + ~**10000 cathodes**
 - anode: 20μm W/Au, cathode: 40/50 μm Al/Ag

Wiring

wire spool

soldering wire

wiring PCBs on cylinder

PCBs

Wiring

cylinder

Performance

- x4 hits more than MEG
 →better momentum
 resolution
- tracks down to TC
 - larger tracking efficiency

From MC simulations the DC performances are in agreements with experimental requirements

Commissioning in 2020 UNFN Stitute Nazionale di Fisica Nucleare

Stability with different gas admixtures (O₂ concentration)

Commissioning in 2020

Only **10% of readout channels** available from WDB **preproduction**:

- noise studies
- hit reconstruction
- gain measurements (front end and gas)
 - **FE gain optimised** (x4 w.r.t. design)

fit of very first tracks

New CDCH wiring

- Disclaimer: the first CDCH is being integrated in the experiment and we believe it can cope with MEGII requirements; if proven to be stable on the long term (test in July this year)
 - nonetheless we want to insure the collaboration by building a back up chamber
- Cathode wire weakness understood
 - insufficient Ag plating due to last wire drawing during production
 - this induces corrosion if moisture is present also at small Relative Humidity values (~10%)
 - checked with the company the possibility to skip last drawing and the reliability of the method
 - only 50 μm wires, 40μm wires must be drawn after plating
- Material procurement on going
 - ready to start wiring within the end of the year
 - will take ~1 year

Timing Counter

Ready for MEG II

Calibration with laser

ZOOM, 29-04-2021

L. Galli, INFN Pisa

Calibration with laser

*different configuration of US/DS because of easier assembly work.

Radiative decay counter

- Tags BG gamma rays from radiative decays by measuring low energy positrons
- Improves sensitivity by 15%

Cylindrical dri

Radiative decay counter

TDAQ electronics

- Fully custom
- Trigger and DAQ integrated
 - wfm digitiser @2GSPS with DRS chip
 - SiPM power supply and amplification included
 - Complex FPGA based trigger with latency <450ps
 - up t0 10 Gb/s DAQ throughput

TDAQ electronics

up t0 10 Gb/s DAQ throughput

Readout

Installation completed

DAQ commissioning ongoing followed by the trigger

Construction status

- Istituto Nazionale di Fisica Nucleare
- LXe: commissioned with ~10% of the channels with muon \bigcirc beam and CEX data 2012 R&D DC: commission ongoing 0 2015 in 2020 we reached the detector stability at full intensity beam Commissioning TC: 100% tested and ready for physics runs 2018 RDC: tested under beam and ready for physics runs TDAQ: installation completed in March 2021 2021 DAQ commissioning at advanced stage 0 DAQ basic trigger algorithms commissioned 0 2024 first version of MEG trigger expected for the end of this year 2021 beam time from July until the end of the year MEG II first physics-like data expected before the end of the year

MEG II vs MEG

PDF parameters	MEG	MEG II
E_{e^+} (keV)	380	130
θ_{e^+} (mrad)	9.4	5.3
ϕ_{e^+} (mrad)	8.7	3.7
z_{e^+}/y_{e^+} (mm) core	2.4/1.2	1.6/0.7
$E_{\gamma}(\%) \ (w > 2 \ \text{cm})/(w < 2 \ \text{cm})$	2.4/1.7	1.1/1.0
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	5/5/6	2.6/2.2/5
$t_{e^+\gamma}$ (ps)	122	84
Efficiency (%)		
Trigger	≈ 99	≈ 99
Photon	63	69
e^+ (tracking × matching)	30	70

$$B_{acc} \propto R_{\mu} \Delta E_e \Delta E_{\gamma}^2 \Delta \Theta_{e\gamma}^2 \Delta t_{e\gamma}$$

cLFV in 10 years

cLFV in 10 years

ZOOM, 29-04-2021

L. Galli, INFN Pisa

Ready to go!

- Despite the pandemic we plan to have a full MEG II run
 - beam from August; installation ongoing

Additional channel: $\mu \rightarrow eX$

- Search for invisible, light and neutral scalar boson X
 - final state with a positron of a fixed momentum
 - MEG II competitive with TWIST from pure statistical point of view
 - systematics on positron energy scale
 dominant for small X mass (<~10MeV)
 - working group established

<u>Master Thesis</u>: A. Gurgone @Univ. Pisa E. Ripiccini @Univ Roma 1 <u>PhD Thesis</u>: M. Francesconi @Univ. Pisa

± 10 keV/c energy offse FWIST upper limit

X mass (GeV/c²)

0.03

0.04

ZOOM, 29-04-2021

10-0

0.01

0.02

Other physics: X(17 MeV) Boson

Anomaly in the process (p,7Li)8Be* measured by Atomki experiment

- can be replicated by MEG II
 - CW accelerator used to LXe calibration
 - tracking of e⁺e⁻ with drift chamber at reduced magnetic field
 - similar angular resolution
 - improved invariant mass resolution ~500keV instead of 1MeV
- Thinner CW Li target in production
 - first tests within the end of this year for method assessment
 - finalluy O(1 WEEK) DAQ time will be sufficient

from slide 26...

<u>PhD Thesis</u>: P. Schwendiman @PSI M. Meucci @Univ Roma 1

β(X) ~ 0.35

18.15 MeV

⁸Be

FIG. 5. Invariant mass distribution derived for the 18.15 transition in 8 Be.

m(X) = 17 MeV

p ′

β(8Be*) ~ 0.017

8Be

 $J^{P} = 1^{+}$

Istituto Nazionale di Fisica Nucleare

L. Galli, INFN Pisa

120

140

160

 Θ (deg.)

80

60

40

100

Conclusions

- cLFV with muons features a unique opportunity to discover physics beyond the standard model
 - muon sector is the most promising from:
 - $\mu \rightarrow e\gamma$, $\mu N \rightarrow eN$ and $\mu \rightarrow eee$
 - complementary searches: sensitive to different new physics dynamics
- MEG II is ramping up @PSI
 - goal: 6 x 10⁻¹⁴
 - construction completed
 - full engineering run in 2021 with first MEG trigger data towards the end of the beam time
 - a full physics program looks just behind the corner!

Thanks for your attention!

Many channels

 $(g-2)_{\mu}$

Ze

NP

q

e

q

μ

 $B \to \ell \bar{\ell}' X_s$

 $B \to \ell \bar{\ell}'$

- A **wide field** of research
 - LFV decays of leptons
 - Anomalous magnetic moment for the μ
 - Muon-to-electron conversion
 - LFV in meson decays

μ as a golden channel

Table 8

High inten:

"DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models

 \star \star signals large effects, \star \star visible but small effects and \star implies that the given model does not predict

sizable effects in that observable. 🔿 larao ci

IEG Beam Transport System The second se

• lurge st		AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	
Iong decay	0م 0م							2	Steering Magnets Expandable Bellyws Statem
	$D^{\circ} - D^{\circ}$	XXX	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathbf{x}\mathbf{x}\mathbf{x}$!	
■ beam t	ϵ_K	\star	$\star\star\star$	$\star\star\star$	\star	\star	$\star\star$	$\star\star\star$	To Cockcroft-
simple kind	$S_{\psi\phi}$	***	***	***	*	\star	***	***	dow Executionmeter accelerator
precise	$S_{\phi K_S}$	***	**	\star	***	***	\star	?	$\cdot \mu \rightarrow 000$
· precise	$A_{\rm CP}(B\to X_s\gamma)$	\star	\star	\star	***	$\star\star\star$	\star	?	$\cdot \mu ightarrow c \gamma$
Production Solenoid Proton Bea Transport Sc	$A_{7,8}(B\to K^*\mu^+\mu^-)$	\star	\star	\star	***	***	**	?	
	$A_9(B\to K^*\mu^+\mu^-)$	\star	\star	\star	\star	\star	\star	?	
	$B \to K^{(*)} \nu \bar{\nu}$	\star	\star	\star	\star	\star	\star	\star	
Production Target	$B_s \to \mu^+ \mu^-$	$\star\star\star$	$\star\star\star$	***	***	***	\star	\star	Pion Capture Section A section to active pions with a large solid angle under a high solenoidal magnete field by superconducting magnet
$Mu2e:\mu N$ -	$K^+ \to \pi^+ \nu \bar{\nu}$	\star	\star	\star	\star	\star	$\star\star\star$	***	Detector Section A detector to search for
	$K_L \to \pi^0 \nu \bar{\nu}$	*	\star	\star	\star	\star	$\star\star\star$	***	muon-berdetion correr- processes Tearr
Contracting of	$\mu ightarrow e \gamma$	***	***	***	***	***	***	***	Bection
	$ au ightarrow \mu\gamma$	$\star\star\star$	$\star\star\star$	\star	***	***	$\star\star\star$	***	a solenci
	$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	$IET \cdot \mu N \rightarrow eN$
ALL THE ALL AND ALL AN	d_n	***	***	***	**	***	*	***	$Ie: \mu N \to eN$
Muon a-	d_e	***	***	**	\star	***	\star	***	'ARC $g-2$
111 aon 9	$(g-2)_{\mu}$	***	***	**	***	$\star\star\star$	*	?	

Complementarity $\mu \rightarrow e\gamma \Leftrightarrow eee$

