RICH simulation for CLAS12

Contalbrigo Marco INFN Ferrara Luciano Pappalardo INFN Ferrara

RICH detector

Mean πk separation (4.5-5 GeV)

Mean πk separation (4.5-5 GeV)

Mean πk separation (4.5-5 GeV)

Mean πk separation (3-8 GeV)

The proximity focus option

Direct measurement in a restricted area

Mean πk separation (3-8 GeV)

Mean p.e. number (3-8 GeV)

The Aerogel option

Mean πk separation (3-8 GeV)

The Aerogel option

Trasmission length is undergoing significantly improvements

2005 IEEE Nuclear Science Symposium Conference Record

Gamma hits with Aerogel

Geometry costraints:

• minimum radius down to 50 cm from beam line

Mean πk separation (5-8 GeV)

Geometry costraints:

• minimum radius down to 50 cm from beam line

• increase number of sectors

Mean πk separation (5-8 GeV)

Geometry costraints:

• minimum radius down to 50 cm from beam line

• increase number of sectors

Weak sensitivity on:

- reduction of active area down to 17°
- minimum N p.e. (from 3 to 5)

Executive summary

RICH with Aerogel matches the required performances

Kinematics

The mirror option: reflection inside

The idea: simulate the material budget of the photon-detector with a material wall placed at the end of the GAP

Main features:

- material: alluminum, copper or tungsten
- pattern: matrix of 8x0.6 cm squared cells (each cell is 52 mm wide with 4 mm of dead area to resemble the **H8500 modules with 0.6 cm pad**)
- width of the cells is random within [0, 2cm]
- position of the wall is varied randomly within 8 cm close to the end of the GAP

Time-of-flight differences due to multiple scattering in the wall

The worst case scenario:

 very low particle momentum (~ 500 MeV) and maximal wall width (2 cm) to maximize effects of multiple scattering

- 4m GAP and wall close to radiator, to magnify to effect of multiple scattering
- tracks at fixed angle (25 degrees)

• effects within TOF detector resolution

Time-of-flight differences due to multiple scattering in the wall

800

Time-of-flight differences in ns

Entries

Mean

1775

-0.1786E-01

The worst case scenario:

- very low particle momentum (~ 500 MeV) and maximal wall width (2 cm) to maximize effects of multiple scattering
- 4m GAP and wall close to radiator, to magnify to effect of multiple scattering
- tracks at fixed angle (25 degrees)

Time-of-flight differences due to multiple scattering in the wall

A more realistic scenario:

- particle momenta of [2.0, 2.5] GeV
- 1m GAP
- random wall width [0, 2.0] cm
- random wall position (within 8 cm, close²⁵ to GAP end)
- tracks with original generated angles

• effects compatible with zero!!

Time-of-flight differences due to multiple scattering in the wall

A more realistic scenario:

- particle momenta of [2.0, 2.5] GeV
- 1m GAP
- random wall width [0, 2.0] cm
- random wall position (within 8 cm, $close^{25}$ to GAP end)
- tracks with original generated angles

• effects compatible with zero!!

Conclusions

RICH with Aerogel matches the required performances

Working to:

- minimize detector area
- minimize detector material >>>> preliminary studies are promising!

Ongoing:

Generalize reconstruction algorithm to treat: multiple track events mirrors

Optimize mirror geometry: minimize detector area minimize interference with TOF

Refraction index: freon

Simulation based on most conservative n (Moyssdes)

Refraction index: quartz

Quartz absorption length and refraction index from Khashan and Nassif, Optic communications 188 (2001) 129

The Aerogel option

