UNlVERSlDADE‘m
FEDERAL DE JulZ DE FORA

Directional-iDBSCAN

a proposal to CYGNO

Igor Pains

Igor Abritta and Rafael A Nobrega

Last presentation

An implementation of the IDDBSCAN with its iteration part written in cython
was made aiming to reduce the duration of the algorithm.

The speed boost was not so high as other implementations found in the
literature.

Number of events

Time efficiency - IDBSCAN

iDBSCAN time histogram

e - 00752 ® The iDBSCAN (one iteration) needed less
| than one second to do the clusterization in
most part of the events.

80

70

e It took less than 0.15 seconds for most part
of the events.

60

e The slowest event needed 1.073 seconds

w
o

IS
S

30

20

10

0.0 0.2 0.4 0.6 0.8 1.0
Seconds

Number
N

10

Time efficiency - IDDBSCAN (python vs cython)

iDDBSCAN(python) time histogram

python

| | |
40

50

40

Number of events
w

10

0

iDDBSCAN(cython) time histogram

cython

The cython algorithm was 25% faster than the python version.

Generated by Cython 0.29.21

Yellow lines hint
Click on a line

(5]
<

thon generat

Raw output: ddbscan_.

#Libraries

rom __future__ import division
cimport cython
cimport numpy as np
import numpy as np
from libcpp.vector cimport vector
from sklearn.linear_model import RANSACRegressor
rom operator import itemgetter
: import time

np. import_array()

n.boundscheck(False)
@icython.wraparound(False)
: cdef np.ndarray[np.npy_floaté4, ndim=1] polyval(np.ndarray[np.npy_floaté4, ndim=1] fit, np.ndarray[np.npy_int64, ndim=1] x):
cdef np.npy_int i, j
cdef np.npy_float6s soma
cdef np.ndarray[np.npy_float64] y_poly

length = x.shape[@]
y_poly = np.zeros(length, dtype = np.float6d)
for i in range(length):
soma = @
for j in range(fit.shape[0]):
soma = soma*x[i] + fit[j]
y_poly[i] = soma

return y_poly

on.boundscheck(False)
@cython.wraparound(Fals
cdef np.ndarray[np.npy_floaté4, ndim=1] ransac_polyfit(np.ndarray[np.npy_int64, ndim=1] x,
np.ndarray[np.npy_int84, ndim=1] y,
np.npy_intp order,
np.npy_float32
np.npy_float32
np.npy_intp k=10
np.npy_float32

>.npy_intp kk, 1
.npy_float64 thiserr, besterr = -1.0

.ndarray[np.npy_int64, ndim=1] maybeinliers, x_in, y_in

>.ndarray[np.npy_bool, ndim=1] alsoinliers

.ndarray[np.npy_float64, ndim=1] bestfit, polyderi, maybemodel, res_th, bettermodel

bestfit = np.full(order+l, -1, dtype = np.float64)
polyderi = np.zeros(order, dtype = np.floatsa)
for kk in range(k):

By using “cython -a *cython_code.pyx*”
an html page will be created to show
how close to C the code is.

The ideal is to have as many white lines
as possible.

Cython updates

e Based on the article: Cython for Speeding-up Genetic Algorithm

(@)

DOI: 10.1109/ICEIT48248.2020.9113210

e There are some tips that may speed up the algorithm:

(@)

o O O O O

Specify the types of the variables, arrays and its elements. /

Loop through arrays using indexing.

Disable unnecessary features such as check array limits and negative indexes.
Use arrays and vectors instead of lists.

Create new arrays instead of access them if they are needed more than once.
Avoid type casts.

https://doi.org/10.1109/ICEIT48248.2020.9113210

Results and conclusions

The speed boost by using a cython version of the ddbscan_inner continued
small, it was 30% faster than the python version after the updates.

Almost 80% of the duration of the algorithm is on the directional search,
mainly due to the ransac_polyfit function, made with a lot of numpy functions.

Put the algorithm in cython is not always equivalent to have a high speed up,
specially if the python algorithm has a lot of library calls.

Next steps

Change the number of attempts in the ransac_polyfit in order to find the best
parameter conciliating results and time efficiency.

Modify the algorithm to just expand the neighborhoods of core points at the
directional search.

Search faster implementations of RANSAC.

RANSAC with Boil-out Test
R-RANSAC with SPRT Feng and Hung’ MAPSAC

ive Termination

R-RANSAC with Tyg Test Gl
i UMLESAC
Progressive RANSAC P

RANSAC

Adaptive Evaluation

pbM-estimator

PROSAC LO-RANSAC

Local Optimization
NAPSAC
GASAC
MLESAC MAPSAC
Guided MLESAC MSAC QDEGSAC

Guided Sampling ['Loss Function | Model Selection

