Chasing dark matter with ATLAS at the Large Hadron Collider

Guglielmo Frattari, PhD seminar series, 5 May 2021

TOM GAULD for NEW SCIENTIST

A bit of context

- Standard Model (SM) particles cannot fully explain structure & dynamics of the universe
- 4 main observations which hint at the existence of dark matter (DM)
 - 1. rotation curves of galaxies

~99% of observed matter

$$v_{rot}(r) = \sqrt{\frac{GM(r)}{r}}, \ M(r) = 4\pi \int \rho(r) r^2 dr$$

Guglielmo Frattari | 5 May 2021 | Chasing dark matter with ATLAS at the Large Hadron Collider | 2

in structure & dynamics of the universe of *dark matter* (DM)

2. Strong gravitational lensing

additional contribution from non-luminous matter

Hints at the existence of a dark matter

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 3

4. Cosmic Microwave Background spectrum

 allows for a quantitative estimate of different energy densities in the universe

Weakly Interacting Massive Particles

- under the hypothesis of a particle nature for dark matter, it must:
 - **be stable** \rightarrow it survived from the early stages of the universe
 - no strong, weak or EM, only gravitationally interacting with ordinary matter \rightarrow hence dark
 - fulfil the observed relic density
- neutrinos <u>ruled out</u>

Good candidate:

- Weakly Interacting Massive Particles WIMPs
- searched in many different ways

The Large Hadron Collider

- the hottest & one of the coolest place in the universe!

 - features 4 main experiments, ATLAS, ALICE, CMS & LHCb

proton-proton collisions at up to 13 TeV supplemented by superconducting magnets working at 1.9 K

Why Large?

- to reach high energy with limited bending power: $p \propto B \cdot R$
- to reduce bremsstrahlung energy loss: $W \propto \frac{E^4}{R^2 m^4}$

Why Hadrons?

further suppress bremsstrahlung:

$$W_e \simeq 10^{13} \cdot W_p$$
 for fixed E

Hadron-hadron collisions 101

Hadron-hadron collisions 101

00000

protons are collided

Hadron-hadron collisions 101

0000

protons are collided

partons actually collide

partons emit QCD radiaton & hadronize

partons emit QCD radiaton & hadronize unstable hadrons decay

partons emit QCD radiaton & hadronize unstable hadrons decay

> **EM** radiation (photons!)

Our microscope: the ATLAS experiment

• A Toroidal Lhc ApparatuS is big, but how much big? ~ 13 x 17.3 Fiat Panda Young, 1998

- one blink of eye (~150 ms) ~ 6 million collisions between pp bunches (one every 25 ns)
 - trigger system selects events to be written to disk (rate ~1 kHZ)

 several sub-detectors covering almost the full solid angle around the interaction point (IP) (25 m) (44 m)

ATLAS in a nutshell

- inside a 2 T axial magnetic field
- position of the IP determined up to $\sim 5 \ \mu m$

ATLAS in a nutshell

- inside a 2 T axial magnetic field
- position of the IP determined up to $\sim 5 \ \mu m$

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 8

Calorimetric system

- measure the energy of particles in a destructive way
- only muons & neutrinos do not interact with it

ATLAS in a nutshell

- inside a 2 T axial magnetic field
- position of the IP determined up to $\sim 5 \,\mu m$

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 8

Muon spectrometer

• 3 big toroidal magnetic fields to bend & measure most penetrating charged particles, muons!

Calorimetric system

- measure the energy of particles in a destructive way
- only muons & neutrinos do not interact with it

Hunting dark matter

- if produced in collisions, dark matter would not interact with ATLAS detectors
 - produce *missing energy* in the final states
- fundamental property of the collisions:
 - happen along one axis \rightarrow total momentum in the transverse plane = 0
 - we can search an object X recoiling against missing transverse momentum (MET)

WHAT DO YOU CALL AN

Hunting dark matter

- if produced in collisions, dark matter would not interact with ATLAS detectors
 - produce *missing energy* in the final states
- fundamental property of the collisions:
 - happen along one axis \rightarrow total momentum in the transverse plane = 0
 - we can search an object X recoiling against missing transverse momentum (MET)

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 10

- mono-X searches
- different final states investigated
 - mono-jet
 - mono-photon
 - mono-V (W or Z boson)
 - mono-Higgs

mono-jet most sensitive search to WIMPs

WHAT DO YOU CAL

1/

//

," |

1.

11

Run: 302393 Event: 738941529 2016-06-20 07:26:47 CEST

1/

//

," |

1.

11

þ

Run: 302393 Event: 738941529 2016-06-20 07:26:47 CEST

Run: 337215 Event: 2546139368 2017-10-05 10:36:30 CEST

Run: 337215 Event: 2546139368 2017-10-05 10:36:30 CEST

Mono-jet analysis strategy

- goal: look for an excess of events with large imbalance in the transverse plane
- 1st. identify candidate events online (i.e. while collisions are running @40 MHz)
- 2nd. apply offline an event selection to isolate candidate signal events

events mimicking the signal signature will still *sneak* into the **Signal Region** \rightarrow

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 13

MET trigger w. threshold to cope with available bandwidth

Signal vs backgrounds

Z(vv) + jets

The need for Control Regions

- data is N[®]LO in both QCD and EW, MC predictions are not
 - predictions are corrected in regions orthogonal to the SR using data

- ratio of MC predictions reduce associated uncertainties too!
- minor extrapolation effects if keeping kinematics selections similar:
 - treating leptons as invisible particles in the CRs!

(e,µ)

Likelihood model and fit strategy

Fit strategy

- 1. estimate the backgrounds in the SR with only the CRs
 - \rightarrow unbiased way to check for any excess in the SR

- 2. include the SR in the fit and derive:
 - model independent limits on the number of possible signal events
 - limits on the parameters of new physics models

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 16

Orthogonal control regions

The money plot

The money plot

The money plot

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

- simple extension of SM, depending on few parameters
 - introduce a lepto-phobic new mediator and fermionic WIMPs, χ
 - can be compared to limits obtained in Direct Detection (DD) experiments

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM}(m_{\chi}, M_{med}, g_q, g_{DM})$$

$$q \qquad \chi(m_{\chi}) \qquad \overline{q} \qquad \overline{$$

$$\overline{q}$$
 g_{q}
 $V, A(M_{med})$
 g_{DM}
 $\overline{\chi}(m_{\chi})$
 \overline{q}

- limits obtained in different mediator nature hypotheses
- fixed coupling chosen for benchmark models

Dark matter from Higgs boson decays

- decay width of Higgs boson is predicted to be < 1% from the Standard Model
- yet no sensitivity from collider experiments, only upper limits set \rightarrow still possible to find decays of the Higgs boson to new particles, like DM particles!

- mono-jet search upper limit: BR(H→inv) < 34% @95% CL second most stringent limit set
 - by a single ATLAS analysis!
- current most stringent upper limit: 11% obtained combining 3 different ATLAS analyses

Conclusions

- mono-jet is a gold channel to probe new physics at the Large Hadron Collider
- suggested readings:
 - ATLAS collaboration physics briefing link

dark matt

Jetting into the dark side: a precision search for dark matter

27th July 2020 | By ATLAS Collaboration

 paper on the arXiv, submitted to Physical Review D for publication link

• general signature: can be used to test several different hypothesis which provide a WIMP candidate

Backup slides

Comparison to Direct Detection DM searches

Spin independent interaction

Guglielmo Frattari 5 May 2021 Chasing dark matter with ATLAS at the Large Hadron Collider 22

Spin dependent interaction

Comparison to Indirect Detection DM searches

Likelihood model

$$\mathcal{L}(\mu, \kappa, \theta) = \prod_{i} \operatorname{Poisson} \left(N_{ri}^{obs} \mid \mu N_{ri}^{sig}(\theta) + N_{ri}^{bkg}(\kappa, \theta) \right) f_{constr}(\theta)$$
regions MET bins data \downarrow expected bkg. parametrisation of systematic uncertainties expected signal

$$N_{ri}^{\text{bkg}} = \kappa_V \left(N_{ri}^{\text{Z+jets}} + N_{ri}^{\text{W+jets}} \right) + \kappa_{t\bar{t}} N_{ri}^{t\bar{t}} + \kappa_t N_{ri}^{\text{single}-t} + \left[N_{ri}^{\text{diboson}} + N_{ri}^{\text{VBF W/Z+jets}} + \left[N_{ri}^{\text{multijet+N}} \right] \right]$$

- three free floating Normalisation Factors
- diboson and VBF W/Z+jets bkgs. taken directly from MC simulation
- multijet and Non-Collision Background: data driven estimate

Control regions modelling

Control-regions-only fit

- over 10⁶ events in Control Regions to constrain Signal Region backgrounds
- excellent modelling of data in all regions

¹²⁰⁰ p^{recoil}[GeV] Cnasing dark matter with ATLAS at the Large Hadron Collider | 25