PhD Seminars

Einstein's spacetime

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$\mu, \nu = 1,2,3,4$$
 space coordinates time

Black holes

- Stellar black holes are the endpoint of the evolution of a star.
- Supermassive black holes are at the centre of galaxies.

$$M \sim 10 \div 10^6 M_{\text{Sun}}$$
$$C = 0.5$$

Black holes in General Relativity

Black holes in General Relativity

Compact binary coalescences

The signal emitted by the coalescence of compact binaries is characterized by 3 stages:

- Inspiral
- Merger
- Ringdown

Compact binary coalescences

The signal emitted by the coalescence of compact binaries is characterized by 3 stages:

- Inspiral
- Merger
- Ringdown

Are we really observing black holes?

Ringdown stage

The ringdown stage is dominated by the characteristic frequencies of the remnant, the so-called **quasi-normal modes**:

$$\omega = \omega_R + i\omega_I$$

The ringdown is modeled as a sum of exponentially damped sinusoids:

$$f_{\rm GW|ringdown} = \frac{\omega_R}{2\pi}$$

$$au_{
m damping} = -rac{1}{\omega}$$

Ringdown detections

The **fundamental quasi-normal mode** has been observed in several gravitational-wave events and is compatible with black hole remnants.

Abbott+, PRL 116, 221101 (2016)

A **test of the black hole paradigm** requires the identification of at least two quasi-normal mode frequencies in the ringdown. Dreyer+, CQG 21, 787 (2004)

Alternatives to black holes

There are several models of **horizonless** compact objects which:

are solutions to *modified gravity* and can overcome the paradoxes of black holes

Mazur, Mottola, PNAS 101, 9545-9550 (2004); Mathur, Fortsch. Phys. 53, 793-827 (2005)

are solutions to general relativity with dark matter or exotic fields

Liebling, Palenzuela, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752, 291-295 (2016)

Alternatives to black holes

There are several models of **horizonless** compact objects which:

are solutions to *modified gravity* and can overcome the paradoxes of black holes

Mazur, Mottola, PNAS 101, 9545-9550 (2004); Mathur, Fortsch. Phys. 53, 793-827 (2005)

are solutions to general relativity with dark matter or exotic fields

Liebling, Palenzuela, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752, 291-295 (2016)

- can mimic black holes in terms of electromagnetic observations
 EHT, ApJ 875, L5 (2019)
- are not excluded by current gravitational wave observations

Abbott+, ApJ 896: L44 (2020); Calderón Bustillo+, PRL 126, 081101 (2021)

EHT, ApJL **910**, L12 (2021)

Exotic compact objects

We analyze a generic model that deviates from a black hole for its:

• Compactness since the radius of the object is at $r_0 = r_+(1+\epsilon)$

Reflectivity

Quasi-normal modes

We can distinguish exotic compact objects from black holes via their quasinormal mode spectrum.

We consider a gravitational perturbation:

$$\frac{d^2\psi}{dz^2} + V(z,\omega)\psi = 0$$

Detweiler, Proc. R. Soc. Lond. A 352 (1977)

+2 boundary conditions:

Eigenvalue problem for the quasi-normal modes

Cardoso, Pani, LRR 22:4 (2019)

Quasi-normal mode spectrum

For $\epsilon \to 0$, the quasi-normal modes of the compact object deviate from the black hole quasi-normal mode and are **low frequencies**.

Cardoso, Franzin, Pani, PRL 116, 171101 (2016); EM, Pani, Ferrari, PRD 96 (2017) 104047; EM, Cardoso, Dolan, Pani, PRD 99 (2019) 064007

Ringdown of exotic compact objects

Ultracompact objects:

- Same prompt ringdown due to excitation of light ring
- Echoes due to trapped modes

Compact objects:

- Modified prompt ringdown
- No echoes

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Template for echoes

Detectability

• A tentative evidence for echoes in LIGO/Virgo data has been reported

Abedi+, PRD 96, 082004 (2017); Conklin, Holdom, PRD 98, 044021 (2018)

 Independent searches argued that the statistical significance of echoes is consistent with noise

Westerweck+, PRD 97, 124037 (2018); Tsang+, PRD 101, 064012 (2020)

- No evidence for echoes in Ligo/Virgo O3a Abbott+, arXiv:2010.14529 (2020)
- Next generation detectors, i.e., LISA and ET, will allow for unprecedented tests of the black hole paradigm. Berti+, PRD 73 (2006) 064030

Conclusions and future prospects

- We can infer the nature of compact objects and look for new physics at the horizon scale with **gravitational waves**.
- Horizonless alternatives to black holes are not excluded by current measurements.
- We derived the ringdown and the echo signal for exotic compact objects.
- Simulations of the formation of exotic compact objects need to be developed.
- Analysis of the sources detectable by the next generation detectors is needed.

Conclusions and future prospects

- We can infer the nature of compact objects and look for new physics at the horizon scale with **gravitational waves**.
- Horizonless alternatives to black holes are not excluded by current measurements.
- We derived the ringdown and the echo signal for exotic compact objects.
- Simulations of the formation of exotic compact objects need to be developed.
- Analysis of the sources detectable by the next generation detectors is needed.

Thank you!