Fastsim EMC Model Update

Chih-hsiang Cheng Caltech 2010/05/27 SuperB Fastsim Meeting

Old model

unit = <u>ns</u>	Fwd	Barrel	Bwd	
σ	100	500	10	
S_hi	100	500	10	$+1\sigma$
S_lo	-100	-500	-10	-1σ
T_lo	-250	-1250	-25	-2.5σ

New model, use more realistic waveform

• Use scintillating light decay time(s), and filter time constants.

- If $\tau_1 = \tau_2$, V_{out} reduces to $V_{out} = (t/\tau)e^{-t/\tau}$
- In out case the light has an exponential decay time (or two)
- CsI: 64% @ 680 ns + 36% @ 3340 ns
- LYSO: 41 ns.

$$V_{\text{out}} = e^{-t/\tau} \frac{\tau_1(e^{-t/\tau_1} - e^{-t/\tau_2})}{\tau_1 - \tau_2}$$

Shapes

- Barrel: CsI, Babar shaping: τ_1 =680 ns, τ_2 = 250 ns.
- Forward: LYSO: shaping: $\tau_1 = \tau_2 = 40$ ns.
- Backward: lifetime 10 ns (?): shaping: $\tau_1 = \tau_2 = 10$ ns (?).
- No attempt to model loss of light yet. Shape will be normalized. And peak is proportional to the energy.

Selection criteria

contributing to it, either accept the full energy, or reject the crystal entirely.

In this graph: barrel, $\Delta t = 120$ ns

- Left: reference, one 1-GeV γ .
- Right: a 1-GeV γ at t=0 and a 1-GeV γ at t=-800 ns.
 - result: in time, E= 1 + tail at expected t-peak.

- Left: reference, one 1-GeV γ .
- Right: a 1-GeV γ at t=0 and a 2.33-GeV γ at t=-600 ns.
 - result: out of time
 (background peak is higher)

- Left: reference, one 1-GeV γ .
- Right: a 1-GeV γ at t=0 and a 2.33-GeV γ at t=-1300 ns.
 - result: out of time
 (background max is higher)

- Left: reference, one 1-GeV γ .
- Right: a 1-GeV γ at t=0 and a 1.22-GeV γ at t=-1300 ns.
 - result: in time (background max is lower)

Parameters

unit = ns	Fwd	Barrel	Bwd
S_hi	50	120	10
S_lo	-50	-120	-10
Bkg region	-250	-1000	50
Simulate	-500	-2500	-100

• Background and simulate region may be too wide, given the narrow peak.

Summary

- New waveform model uses physical parameters (scintillator decay time, preamp shaping time); can adjust according to the hardware.
- Assume we know the exact physics event time.
- Signal region is narrower than before.
- Timing model allows merging of different times.
- Assume we will look for background peak, and reject the digi if the background peak is high.
- The cost is that we need to simulate/reconstruct for a much wider time range than the signal selection region.