M.G. Pellegriti

Laboratori Nazionali del Sud – INFN Dipartimento di Fisica ed Astronomia, Università di Catania

Exploring ¹²B Structure by ⁸Li-α Resonant Elastic Scattering

IV French-Italian meeting of the Associate European Laboratory (LEA-COLLIGA) INFN Laboratori Nazionali di Legnaro, 18-19 November 2010

Outlook

motivations

set-up

- Exotic clustering
- g.s. behaviour of Boron isotopes
- ¹²B : exicited ⁸Li- α cluster states

experimental

method

Inverse kinematics resonant elastic scattering

Inelastic scattering contaminations

⁸Li @ EXCYT

- ⁸Li-α experiment Preliminary results

Exotic Clustering

description of unstable nuclei as di-nuclear structures

Clustering in neutron rich nuclei

Matter density distribution in Boron isotopes ground states (AMD calculations): drastic changes in the isotopes structure with the increasing number of neutrons

Thick Target Inverse Kinematic resonant elastic scattering method

Y+p**→X*****→**p+Y

K. P. Artemov et al. Sov. J. Nucl. Phys. 52, 408(1990)

• beam energy loss in the target \rightarrow wide range for E_{cm}

• inverse kinematics \rightarrow forward focused recoiling protons (negligible energy loss in the target)

• proton spectra \rightarrow information on the resonance energy, orbital momentum, and proton width

Inelastic scattering contamination in thick target experiments

The choice of the target thickness

- A <u>very thick target</u> → general overview of level scheme
- A thinner target → less straggling and more precise information on the investigated state

In general the target thickness and initial beam energy must be adapted to the experimental goal

Time of flight and extended and infinite thick target

⁸Li @ EXCYT, INFN-LNS Catania

⁸Li- α elastic cross-section

Monte Carlo to evaluate experimental resolution R-matrix analysis $\rightarrow E_R$, $\Gamma \alpha$

Conclusions

<u>⁸Li+⁴He→⁸Li+α</u> has been studied by using a beam energy of E=30.6 MeV

The **TTIK** experimental technique with the **tof measurement** allows discrimination between elastic and inelastic (or other) scattering

⁸Li-alpha elastic scattering cross section has been obtained around θ_{cm} = 180

Evidence for large resonances in the elastic cross section

FUTURE ANALYSIS:

Monte Carlo Simulation including:

 \rightarrow beam profile (experimental collimation)

 \rightarrow energy and angular straggling for beam and recoil particles

R-matrix analysis to obtain the resonance parameters

Collaboration

<u>D.Torresi</u>^{a,b}, L. Cosentino^a, A. Di Pietro^a, C. Ducoin^c, M. Lattuada^{a,b},
T. Lonnroth^d, P. Figuera^a, M. Fisichella^a, C. Maiolino^a, A. Musumarra^{a,e},
M.G. Pellegriti^{a,b} M. Papa^d, M. Rovituso^b, V. Scuderi^{a,b}, G. Scalia^b,
D. Santonocito^a, M. Zadro^f

a) INFN Laboratori Nazionali del Sud, Catania, Italy b) Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy c) INFN, Sezione di Catania, Italy d) Åbo Academy, Turku, Finland e) Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Università di Catania, Catania, Italy f) Ruđer Boskovic Institute, Zagreb, Croatia

Stopping Power measurements

Measurement of the reasidual beam energy as a function of P

How to extract the resonance parameters from the experimental data:

The R-matrix formalism

A.N. Lane and R.G. Thomas, Rev. Mod. Phys. 30 (1958) 257-353.

⁸Li- α elastic cross-section

http://www.tunl.duke.edu/nucldata/HTML/A=12/12B_1990.shtml#28

⁹Be(7Li, α)¹²B

5

15.5

Time measurement

Microchannel Plate

The choice of the target thickness

 $^{18}Ne+p \rightarrow ^{19}Na^* \rightarrow p+^{18}Ne$

66 MeV ¹⁸Ne beam on a **2 mg/cm² (CH₂)_n target**

Pellegriti et al. PLB659 (2008) 864