

Advance on the Neutron Converter for SPIRAL2

Luigi B. Tecchio, G. Acosta, J. Bermudez, E. Udup

Laboratori Nazionali di Legnaro

on behalf of the LNL-BINP-GANIL/SPIRAL2, LEA collaboration & & ISTC project #3782

Design of the Carbon Converter:

Design of the neutron converter Test of single components Activation of materials Radiation damage (see J. Bermudez)

Delay Window:

Principle of delay window Preliminary tests Prototyping

Conclusions

SPIRAL2 Project:

40 MeV deuterons 5 mA 200 kW (1,25 mA, 50 kW) 2,4 kg Ucx target Main Goal: 10¹⁴ Fission/s induced by neutron Neutron Converter: 10¹² n/cm² s Rotating wheel with graphite as converter material Working temperature up to 1850 °C **Radiation cooling** Neutron converter has been conceived to operate as "nuclear device"

The Neutron Converter

The Neutron Converter

The Neutron Converter 200 kW

The Neutron Converter

200 kW

50 kW

The Neutron Converter

The Neutron Converter Temperature

50 kW

Spiral 2

200 kW

The Converter Temperature 50 kW

The Converter Temperature 200 kW

Max. converter temp. [⁰C]	Target diameter [cm]	Max. metal temp. [⁰C]	Max. t-m stress in graphite [Pa]	Max. t-m stress in metal [Pa]	Max. inertial stress (10 Hz) [Pa]
1850	52 485.5		2.52×10 ⁷	5×10 ⁶	3.44×10 ⁶
Material	Max. t/m stress von Mises [Pa]	Max. t/m stress X-component [Pa]	Max. t/m stress Y-component [Pa]	Max. t/m stress Z-component [Pa]	Max. deformation [mm]
Graphite	2.49×10 ⁷	2.17×10 ⁷	1.26×10 ⁷	4.12×10 ⁶	0.56
Metal	3.85×10 ⁷	2.71×10 ⁷	3.72×10 ⁷	3.84×10 ⁷	0.29

Spiral Converter Stress Parameters 200 kW

Max. converter temp. [⁰C]	Target diameter [cm]	Max. metal temp. [ºC]	Max. t-m stress in graphite [Pa]	Max. t-m stress in metal [Pa]	Max. inertial stress (10 Hz) [Pa]
1857	120	554 2.9×10 ⁷		2×10 ⁸	5×10 ⁷
Material	Max. t/m stress von Mises [Pa]		Max. t/m stress Y-component [Pa]	Max. t/m stress Z-component [Pa]	Max. deformation [mm]
Graphite	3.16×10 ⁷	3.25×10 ⁷	2.03×10 ⁷	2.85×10 ⁶	0.18
Metal	3.8×10 ⁸	10 ⁸	1.3×10 ⁸	1.45×10 ⁸	0.63

Converter Water Cooling

Water peremeters		Maaura us!4	Converter		
water parameters			50 kW	200 kW	
Water temperature inlet to all chanr	٥C	25	25		
•	channel #1	۵°	30,1	32,4	
	channel #2	۵°	61,5	40,3	
	channel #3	۵°	75,1	79,4	
	channel #4	°C	67,8	79,7	
Maximum water temperature	channel #5	°C	53,4	64,7	
·	channel #6	°C	30,1	26,8	
	channel #7	°C	57,3	28,8	
	channel #8	°C	52,1	88,9	
	channel #9	°C	54,1	89	
	channel #1	Pa	1,46 e+05	1,51 e+05	
	channel #2	Pa	1,02 e+05	1,01 e+05	
	channel #3	Pa	1,42 e+05	1,47 e+05	
	channel #4	Pa	1,52 e+05	1,53 e+05	
Pressure drop over the water	channel #5	Pa	1,40 e+05	1,42 e+05	
•	channel #6	Pa	1,48 e+05	1,08 e+05	
	channel #7	Pa	1,02 e+05	1,01 e+05	
	channel #8	Pa	1,91 e+05	1,92 e+05	
	channel #9	Pa	1,91 e+05	1,91 e+05	
Water consumption channels		l/s	0,33	0,33	
Water velocity at the inlet, average	value	m/s	3	3	
	channel #1	m/s	2,07	2,32	
	channel #2	m/s	2,32	2,33	
	channel #3	m/s	2,32	2,26	
Water velocity at the outlet aver	channel #4	m/s	2,05	1,98	
water verocity at the outlet, avera	channel #5	m/s	2,38	2,45	
value	channel #6	m/s	2,14	3	
	channel #7	m/s	2,12	1,84	
	channel #8	m/s	2,22	2,10	
	channel #9	m/s	2,05	1,85	

The Neutron Converter 200 kW

• 4

Total mechanical deformation Legnaro November 19, 2010 LEA-COLLIGA Workshop

Activation and Radiation Damage at 200 kW

Spiral.

Main activation from LPb

Activation of Graphite induced by Deuterons (¹³N, ¹¹C)

β+ activity	(saturation)	~2 10 ³ Ci,
Cooling time	1 h	~ 50 Ci,
	2 h	~ 2 Ci,
	6 h	2.5 10 ⁻³ Ci

Displacement Per Atom induced by Deuterons (10⁴ h) :

In Graphite ~50 DPA In Steel maximum (Delay Window) ~1 DPA Wheel 10⁻³ – 10⁻² DPA

Annealing effect is not considered in calculations.

Deuteron Mobility in Graphite: MD Simulation

Simulations: the graphite sample contain ~30 000 atoms and 100 atoms of hydrogen (deuterium) were distributed inside. The time step of integration is 0.1 fs. The behavior of the system of hydrogen atoms was tracked up to 0.2 ns. From the analysis of the hydrogen trajectories the hydrogen mobility was evaluated in the given conditions of the simulation.

Deuteron Concentration in Graphite

Radiation Damage: Test with Protons

The CN accelerator of LNL may deliver 6 MeV, 4 μ A proton beam, with a current density of about 20 mA/cm². In about 20 hours was possible to induce in graphite more than **1 dpa**. Deformation and changes in the graphite structure have been measured by profilometry, XDR and SEM techniques. First experiment was performed October 26.

See J. Bermudez

Local Temperature about 300 °C

Ball Bearings Test

Ball Bearings Test

<u>Goal:</u> To protect the UC target from the direct high power deuteron beam. <u>Concept:</u> A continuous flow of Liquid Pb at high temperature (>300 °C) is circulating inside a panel properly shaped (delay window) and located between the converter and the UC target.

The thickness of the lead is selected to stop completely the beam.

After melt the first wall of "delay window" the Liquid Pb fall down on the bottom of the "production module" where solidify, until the Pb reservoir will be empty.

thickness of Liquid Pb jet	5 mm
width of the delay window	60 mm
thickness of the walls (stainless steel)	2 mm
velocity of the Liquid Pb	<2,0 m/s
temperature of Liquid Pb jet	<1740 °C b.p.
time of melting first wall	~ 5 ms
evacuation rate of Liquid Pb in case of failure	~ 0,5 l/s
active protection time in case of failure	~ 60 s

Pump for LPb system

Liquid Lead Component's Test

Test of the Heat exchanger

Test bench for the LPb cooling system

Delay window: 1^{rt} test experiment

SPIRAL2 at 200 kW \implies 60 kW/cm²

+ Kal	·		Beam current	Beam power	LPb velocity	Location	Spot size
	6		[mA]	[kW]	[m/s]		[mm]
401	MIL T	~2	50	3,0	0,9	LPb	1,2
		n ~	70	4,2	1,33	LPb	0,9 – 1,0
Atri All	4.		▶ 80	4,8	1,33	Front wall	2,3
V E			80	4,8	1,33	Rear wall	1,2
	LPb pump	Leg	naro N39 ember	19, 2 09,7 LE	A-COL Q IGA Wor	kshop LPb	3,2 x 2,5

Delay window: 2nd test experiment

Power density of **160** kW/cm² (240 mA current, 60kV and 2σ =3.4 mm beam size). Lead thickness = 3 mm.

20% pressure drop detected.

Delay window: 3rd test experiment

Parameter	Measure unit	Value
Thickness of LPb jet (100 MeV deuteron)	mm	5
Width of the delay window	mm ²	70 x 40
Thickness of the walls (stainless steel)	mm	2
Velocity of the Liquid PbSn	m/s	1,4
Temperature of LPb jet	۵°	350
Active protection time in case of failure	S	60

Spiral Z

Delay window: 3rd test experiment

Parameter	Before melting	After melting
e-beam current		45 mA
Beam diameter (2σ)	1,7 mm	1,7 mm
Beam power density		120 kW/cm ²
Time of the measurements		120 s
Vacuum pressure	3,4 x 10 ⁻⁵ mbar	3 x 10 ⁻⁴ mbar
Motor absorbed current	28 A	25 A
LPb pressure	Unstable	Unstable

Delay window: Long Term Test

Long term test Test of the heat exchanger

Delay window: Long Term Test

Materials Selection

Stool	Stress	Time to destruction	Test temperature
Sieei	[MPa]	[h]	[°C]
X12H22T3MP	700	>10000	500
X12H22T3MP	350	10000	600
X12H22T3MP	450	1500	600
X12H22T3MP	300	10000	650
X12H22T3MP	250	10000	700
X15H35T3B2Yu	570	10000	550
X15H35T3B2Yu	450	10000	600
X15H35T3B2Yu	300	>>10000	600
X15H35T3B2Yu	240	10000	700

Steel	С	Si	Mn	Cr	Ni	Ti	AI	V	Мо	Fe
DIN 17240	< 0,08	< 1	< 2	14,5	26	2,1	< 0,8	0,3	1,25	Base
JIS G-4311	< 0,08	< 1	< 2	13,5 16	24 27	1,9 2,3	0,35	0,1 0,5	-	Base
AISI 316 Unite States	0,08	1,0	2,0	16 18	10 14	-	-	-	2 3	Base

Properties	TM-1	AXF-5Q	Unit
Density	1,82	1,78	g/cc
Porosity	20	20	%
Particle Size	10	5	μm
Ultimate Tensile Strength	40	60	MPa
Modulus of Elasticity	10	11	GPa
Flexural Strength	60	99	MPa
Compressive Yield Strength	110	145	MPa
Electrical Resistivity	0,0012	0,00147	ohm-cm
CTE, linear	8,20	7,90	µm/m-°C
Thermal Conductivity	105	95	W/m-K

Procedures for Safety & Quality Assurance.

Procedures for drawings and traceability.

Method and procedures to prepare the call for tender (Cahier des charges);

Reference documents (for quality assurance)

Basing on prototype test, the thermo-mechanical design of converter has been done and the main parameters have been defined;

Critical components are been tested (bearings, lead pump & motor,...);

Radiation activation and radiation damage calculations have been performed;

>Tests on radiation damage of graphite due to deuteron beam are in progress;

>Three tests of the delay window were already successfully performed;

>The"nuclearized" integration of the converter in the Production Module is going to the end.

The goal is start the procedures for the tender for the construction of the converter and delay window end 2010 or beginning 2011 and get the first prototype at the end 2011.