

RADIATION DAMAGE IN THE NEUTRON CONVERTER SPIRAL 2 J. Bermudez¹, E. Coutereau², S. Essabaa², C. Lau², J. Mottier², A. Said²., A. Semsoum, L. Tecchio¹. (1)LNL-INFN Italy (2)IPNO France

PROTOTYPE:

- → **Primary Beam**: 40 MeV deuterons
- \rightarrow **Current** 1-5 mA,
- →Thermal power dissipated only by thermal radiation.
 (200 kW)
- →**Temperature** on converter can arise to 1850°C

Spiral 2 **Request:** •Evaluate changes on the structure during One cycle of operation (3 months)

3

Graphite characteristics and material properties

INFN

Thermal conductivity at high target temperature and exposed to irradiation is matter of interest and **must be studied** 4

Spiral 2

FACTOR CONTROLING RADIATION DAMAGE

Radiation damage dependence on:

- Irradiated particles
- □ Flux of irradiated particles
- Number of displacement per atom DPA
- Energy required to produce the displaced atom
- Maximal energy that can be transferred to atoms by the incident particle with energy E
- Number of the displacements due to a knock-on primary displacement (radiation damage function)
- Cross section of a particle of energy E to produce the DPA with the energy T

24/11/2010

Spiral2

FIRST APPROACH- THEORETICAL -CALCULATIONS

I.L. Svyatov, V.V. Plokhoi, V.V. Sagaradze, D.V. Khmelnitsky

Use of PRIZMA and ATOCAS codes to <u>correlate dpa and neutron fluence</u> induced atom displacements.

Considering relatively low neutron yield from ¹²C(d,n)¹³N reaction (~4%), <u>the major radiation damages caused by the primary beam</u> can be expected (high energy deuterons beam).

For 10.000 hours of target operation the maximum number of displacements in graphite will <u>be ~50 dpa</u>, without considering temperature effect.

This results push us to an evaluation of graphite charateristics with an experimental approach

Was proposed an experiment at CN Accelerator at LNL:

SRIM -Not considering Temperature effects

INFN

The energy is deposited in the bragg peak where the beam is stoped.

In this case at 300 μm deph

Beam characteristics: protons 5 MeV, 4μA beam spot 0,2 cm² current density 20 μA/cm²

 $7,7x10^{18}$ p/cm² = 1 dpa We could obtain 1 dpa after 20 hours of irradiation

Surface analysis before irradiation

Sample: POCO graphite

Profile-map. Dektak Profilmeter. Stylus scaning. Force applied by the scaning tip: 0.3 N

Results: Analysis after Protons irradiation at LNL-INFN

INFN

Protons 5 MeV, 4µA
Current density 20 µA/cm²
Temperature during irrad 300 °C

9

10

Results: Analysis after 26MeV Deuterons irradiation at TANDEM- IPNO

Sample: POCO graphite

SPOT

Radiation spot diameter: 2mm. current planned: 1.5 mA.

Total number of particles deposited during 1 week of irrdiation: 9,67E+17 ions corresponding to 1dpa

*Coutersy of Mr. Marc and Alan Graphite Sample after 1 week irradiation with 26MeV deutons at IPNO

Results: Analysis after 26MeV Deuterons irradiation at TANDEM- IPNO

*Coutersy of Mr. Mottier & Mr. Lefort

INFN

24/11/2010

Results: Analysis after 26MeV Deuterons irradiation at TANDEM- IPNO

BETA-Gamma plaque analysis of Graphite Sample after 1 week irradiation with 26MeV deuterons at IPNO.

Results: Analysis after 26MeV Deuterons irradiation at TANDEM- IPNO

Profile analisys of Graphite Sample after 1 week irradiation with 26MeV deutons at IPNO

24/11/2010

*Coutersy of Mr. J Mottier & Mr. Christoph Lau

FUTURE -

- Next week will be irradiated at IPNO the sample one week more, in order to reach damage of 3-5 dpa.
- After the decay time required, XRD and profiles analysis will be carried out, to asses the effect of deuteron radiation on POCO graphite.

Thank's for your attention...