

SPES Project

Selective Production of Exotic Species

1 5 November 2010, SPES workshop

Starting points:

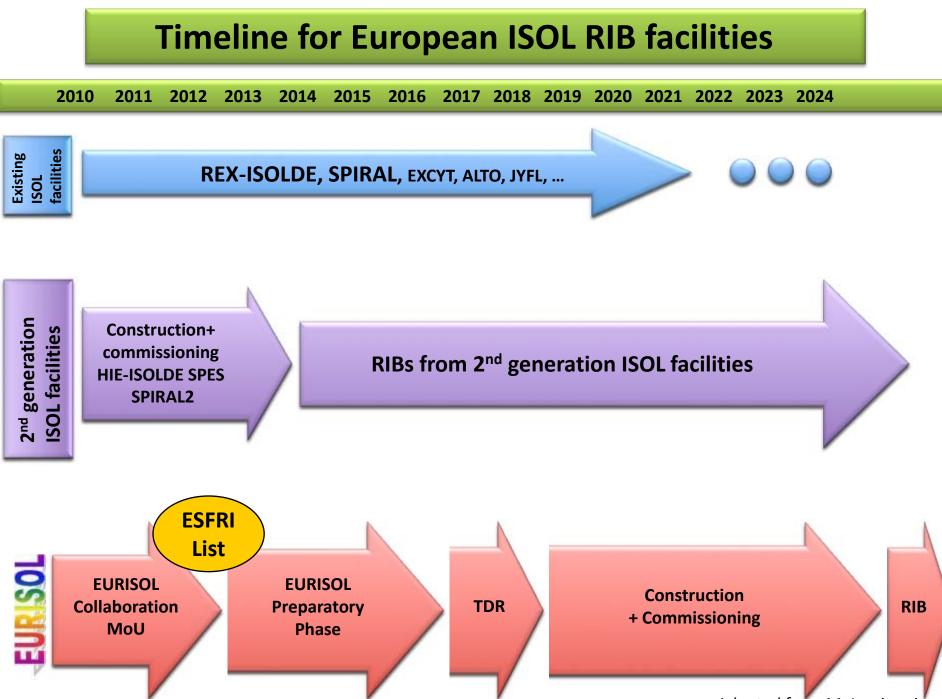
Introduction

- **1.** To develop a Neutron Rich ISOL facility using the ALPI linac as reaccelerator is a step forward in the nuclear physics research.
- 2. The development of an ISOL facility at 10¹³ Fission/s is a challenging goal at the up to date level.
- **3.** The structure of an ISOL facility is of interest for applications in fields as neutron production and medicine.

SPES strategy

Exotic nuclei

ISOL facility for Neutron rich nuclei by U fission 10¹³ f/s


high purity beam Reacceleration up to >10 MeV/u

Applications

Proton and neutron facility for applied physiscs

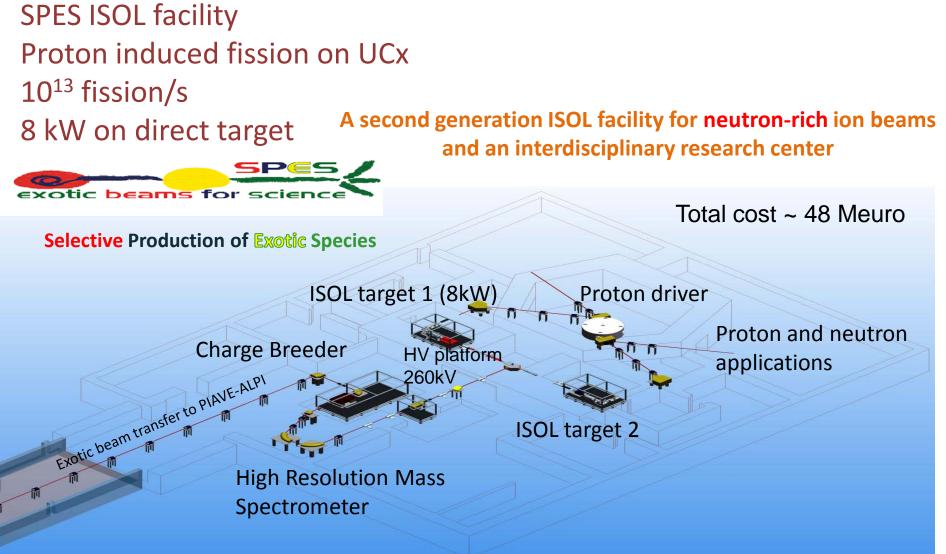
Material science & Medical applications

Adapted from M. Lewitowicz

Sinergies and Complementarities between the 2nd generation RIB facilities

Different primary beams, production methods and beam handling

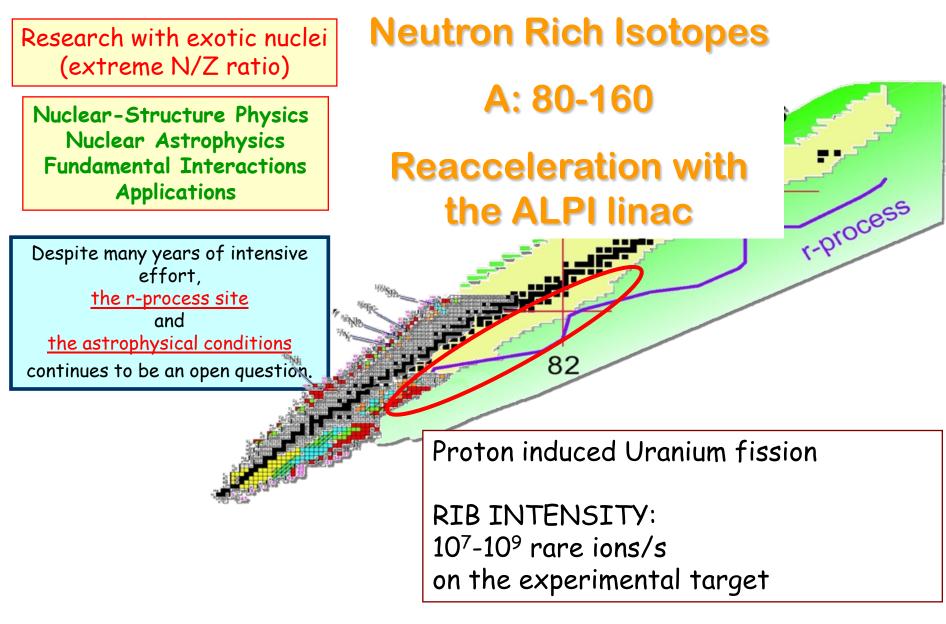
Developments of a variety of new and complementary techniques which will be all essential for EURISOL


Different capabilities in providing RIBs, with limited duty cycle

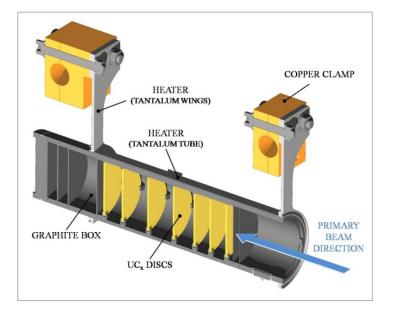
Complementarity in satisfying the future beam time requests

(Importance of an european coordination)

SPES ISOL facility at LNL



Exotic beams at SPES ISOL facility

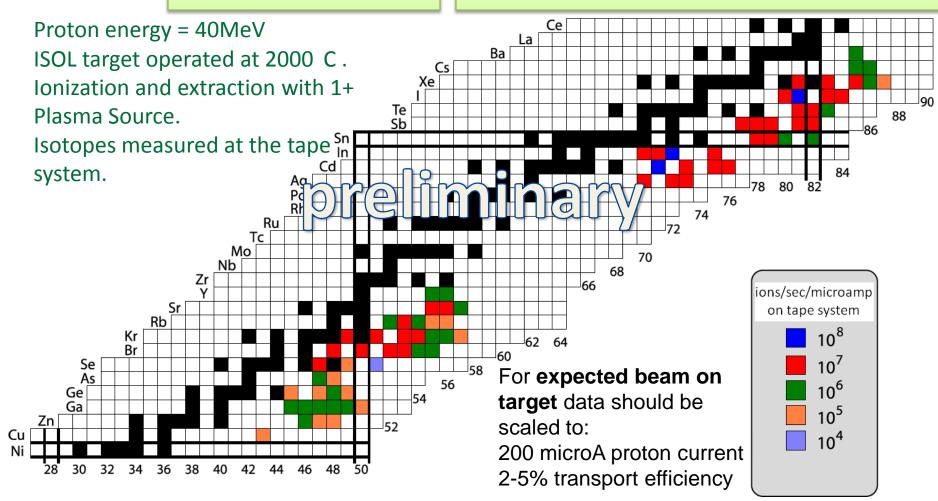


Evaluation of SPES RIBs

Target: **7** UCx disks 4 cm diameter 1.3 mm thick (3 g/ cm³ UCx density).

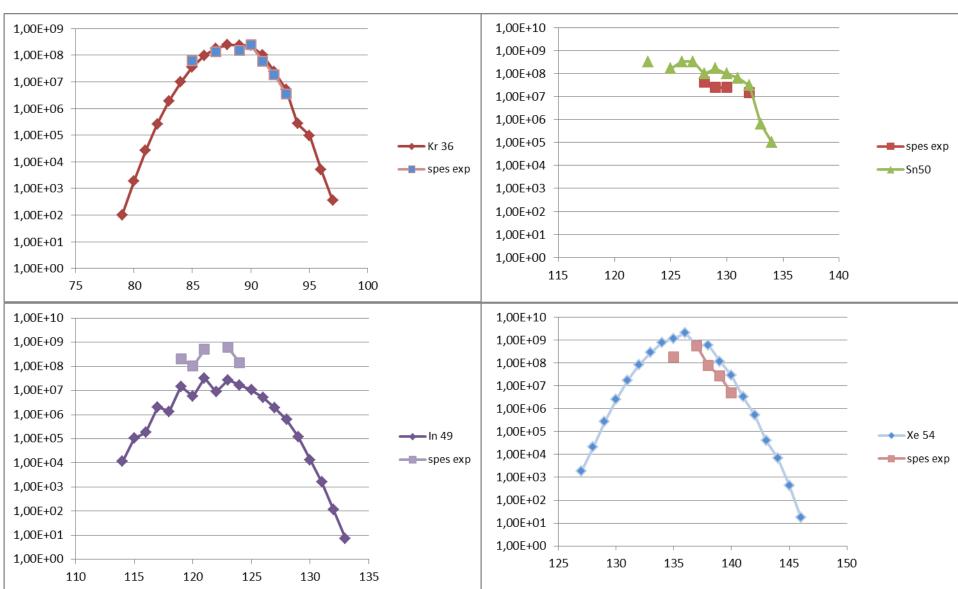
Beam: 40 MeV/ 0.2 mA proton beam

Evaluation of the SPES production yields are based on calculations and experimental yields measured at HRIBF at the ionization source exit (1+).


The baseline method is based firmly on existing techniques and does not utilize the full power of the Cyclotron; it leaves substantial scope for improvement as we improve our experience with the machine and the target development.

SPES Target Preliminary data of HRIBF experiment

Experiment March 2010


Evaluated production rate for 1 microA proton current

SPES re-accelereted RIB's scaled from HRIBF data and 2010 test experiment

exotic beams for

SPES CYCLOTRON

load work per year

2 weeks per shift

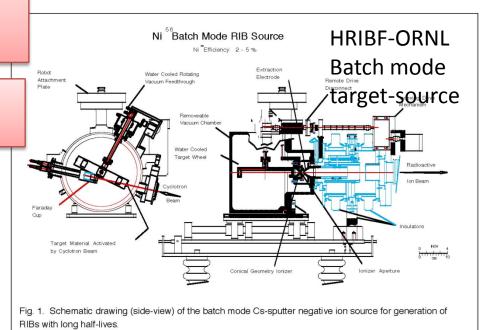
Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

Expected Beam on target: more than 10000 hours per year

	Proton	N.rs of SHIFTS	Beam on target: Total 10600 hours
	beam		Total T0000 Hours
ISOL 1	300µA	10	2800
	40MeV		
Irradiation 1	500 µA	9	2500
	70MeV		
Irradiation 2	500 μΑ	10	2800
	70MeV		
ISOL 2	300 µA	9	2500
	40MeV		
Maintanance		7	7x14x24 = 2350
Cyclotron		19	19x12x24= 5462
Operation			esperiment
			19X2x24= 912 beam
			preparation


Batch-mode isotopes production

Production of radioactive isotopes with long decay time (days-years) and acceleration in the Tandem-ALPI ion source.

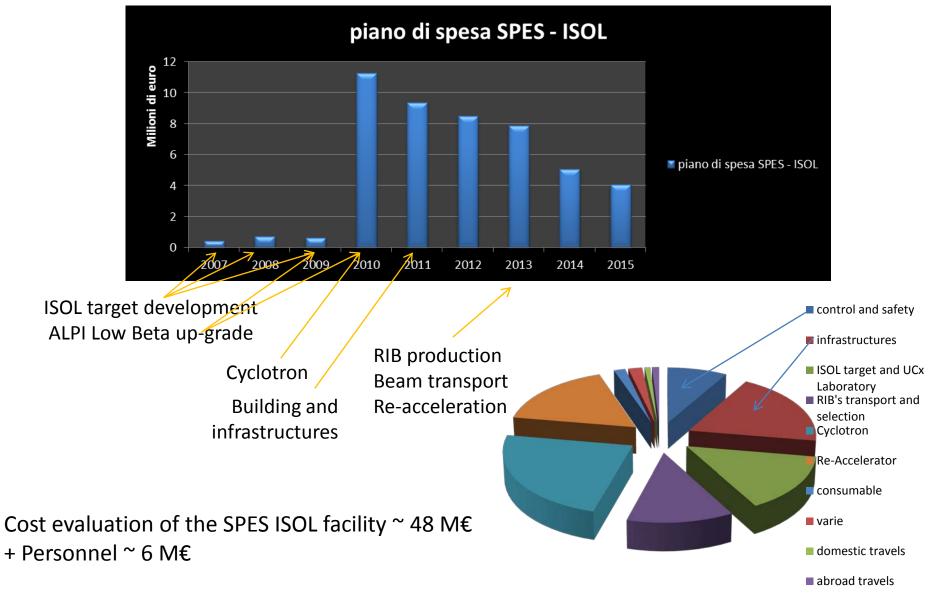
 $\begin{array}{l} \mbox{Proton current}: 10\mbox{-}100 \ \mu A \\ \mbox{Irradiation time}: 10 \ \mbox{days} \end{array}$

Target R&D needs to improve the power dissipation and production rate

Expected beam on target: in the order of 10⁸ pps

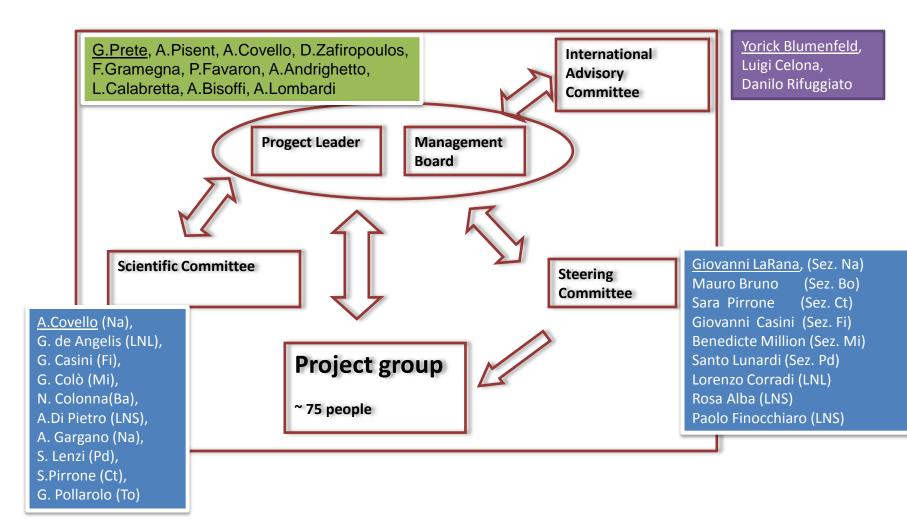
Some proton-rich isotopes can be produced in Batch Mode

⁴⁶ Ti(p,2n) ⁴⁴ Ti	⁵⁸ Ni(p,2n) ⁵⁶ Ni	⁷⁰ Ge(p,2n) ⁶⁸ Ge	⁷⁴ Se(p,2n) ⁷² Se	⁸⁴ Sr(p,2n) ⁸² Sr	⁹⁰ Zr(p,2n) ⁸⁸ Zr
47.3y	6.1d	288d	8.5d	25.5d	83.4d
1.4 10 ¹⁶	2.6 1015	2.7 1017	3.2 1014	8.9 10 ¹⁷	4.6 10 ¹⁶
47	51	55	60	112	60
6.4 10 ²⁰	5.3 10 ²⁰	4.7 10 ²⁰	4 10 ²⁰	8 10 ²⁰	4 10 ²⁰
2.2 ⁻⁵	4.9 10-6	6 10-4	1.1 10-4	1 10-3	1.1 10-4
2.6 108	3.0 107	3.6 109	7 108	7 109	7 108
3 107	3.0 10 ⁶	4 10 ⁸	7 10 ⁷	7 10 ⁸	7 107
	47.3y 1.4 10 ¹⁶ 47 6.4 10 ²⁰ 2.2 ⁻⁵ 2.6 10 ⁸	$\begin{array}{c cccc} 47.3y & 6.1d \\ \hline 1.4 \ 10^{16} & 2.6 \ 10^{15} \\ \hline 47 & 51 \\ \hline 6.4 \ 10^{20} & 5.3 \ 10^{20} \\ \hline 2.2^{-5} & 4.9 \ 10^{-6} \\ \hline 2.6 \ 10^8 & 3.0 \ 10^7 \end{array}$	$47.3y$ $6.1d$ $288d$ $1.4 \ 10^{16}$ $2.6 \ 10^{15}$ $2.7 \ 10^{17}$ 47 51 55 $6.4 \ 10^{20}$ $5.3 \ 10^{20}$ $4.7 \ 10^{20}$ 2.2^{-5} $4.9 \ 10^{-6}$ $6 \ 10^{-4}$ $2.6 \ 10^8$ $3.0 \ 10^7$ $3.6 \ 10^9$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$47.3y$ $6.1d$ $288d$ $8.5d$ $25.5d$ $1.4 \ 10^{16}$ $2.6 \ 10^{15}$ $2.7 \ 10^{17}$ $3.2 \ 10^{14}$ $8.9 \ 10^{17}$ 47 51 55 60 112 $6.4 \ 10^{20}$ $5.3 \ 10^{20}$ $4.7 \ 10^{20}$ $4 \ 10^{20}$ $8 \ 10^{20}$ 2.2^{-5} $4.9 \ 10^{-6}$ $6 \ 10^{-4}$ $1.1 \ 10^{-4}$ $1 \ 10^{-3}$ $2.6 \ 10^8$ $3.0 \ 10^7$ $3.6 \ 10^9$ $7 \ 10^8$ $7 \ 10^9$


SPES Schedule July 2010

	2010	2011	2012	2013	2014	2015
	11.3 ME	9.4 ME	8.5ME	8.0 ME	5.1 ME	4.1 ME
Facility preliminary design completion						
Prototype of ISOL Target and ion source						
ISOL Targets construction and installation						
Authorization to operate And safety	Cyclot	ron ope	eration	UCx operat		on
Building's Tender & Construction						
Cyclotron Tender & Construction						
Cyclotron Installation and commissioning						
Neutron facility design						
Neutron facility construction						
Alpi preparation for post acceleration						
Design of RIB transport & selection (HRMS, Charge Breeder, Beam Cooler)						
Construction and Installation of RIBs transfer lines and spectrometer						
Complete commissioning						

SPES ISOL economic plan



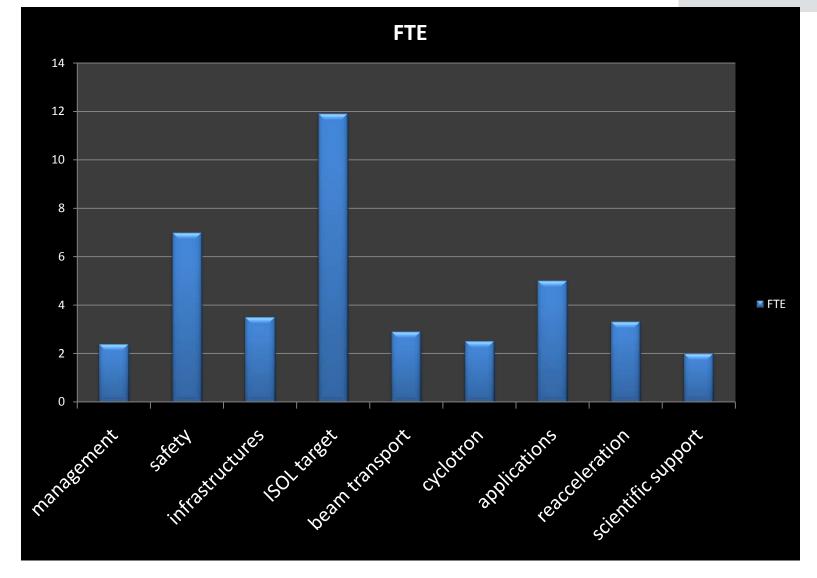
Operation ~ 2 M€/year

SPES Organizzation

SPES ORGANIZATION

<u>TASK</u>	<u>Responsible</u>	<u>Subtask</u>	<u>Responsible</u>		
SAFETY	G. Prete	Safety	G. Prete	See	
RADIATION PROTECTION CONTROLS		Radiation Protection	D. Zafiropoulos	D. Zafiropoulos talk	
		Controls	G. Bassato		
INFRASTRUCTURES	P. Favaron	Buildings	E. Brezzi	Later in this talk	
		Technical Plants	R. Pegoraro		
ISOL TARGET	A. Andrighetto	Front End	A. Andrighetto	See	
		Laser Source	P. Benetti	A.Andrighetto	
		Target Handling	M. Guerzoni	talk	
BEAM TRANSPORT &	L. Calabretta	RIB Transport	M. Comunian	See	
MANIPULATION		HV Platform	F. Moisio	L. Calabretta	
		Mass Selection	A. Dainelli	talk	
		Beam Cooler	A.M. Porcellato		

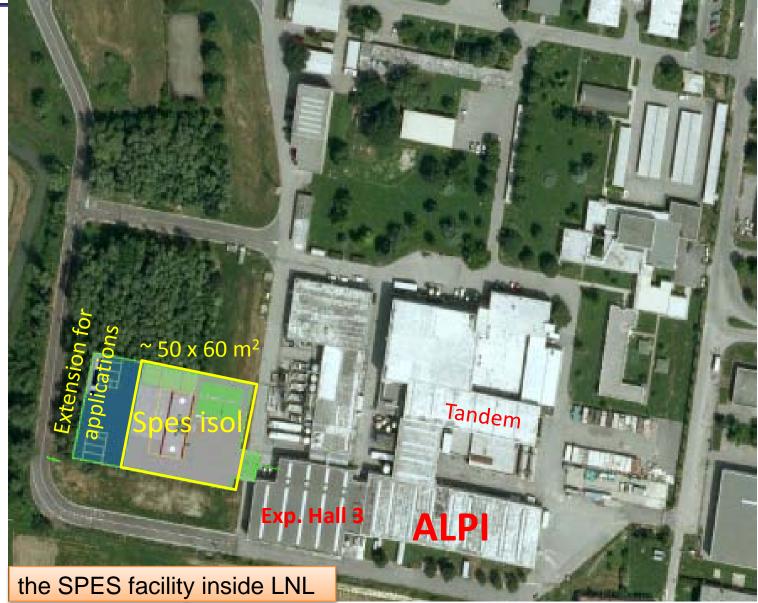
SPES ORGANIZATION



TASK	<u>Responsible</u>	<u>Subtask</u>	<u>Responsible</u>	<u>TASK</u>	
HIGH INTENSITY linac	A. Pisent	High Intensity LINAC	E. Fagotti	See P.F. Mastinu &	
(switched to IFMIF)		BNCT	J. Esposito	E. Fagotti	
		LENOS	P.F. Mastinu	LEA Colliga talks	
PROTON DRIVER	A. Lombardi	optics and beam transport	M.Maggiore	Later in this talk	
		Infrustructures and RF	L.Piazza		
RE-ACCELERATON	G. Bisoffi	Charge Breeder	A. Galatà	See	
		Diagnostic	M. Poggi	G. Bisoffi talk &	
		PIAVE	G. Bisoffi	T. Lamy LEA Colliga talk	
		ALPI low-Beta	A. Facco	LEA Comga taik	
SCIENTIFIC SUPPORT	F. Gramegna	SPES beam evaluation	M. Cinausero		
		Batch Mode	F. Recchia	Later in this talk	
		Nucl. Phys. Experiments	A.F. Di Pietro		
		Communication and Scientific Documentation			
PROJECT MANAGEMENT		Project management	L. Piazza		

Project group PERSONNEL

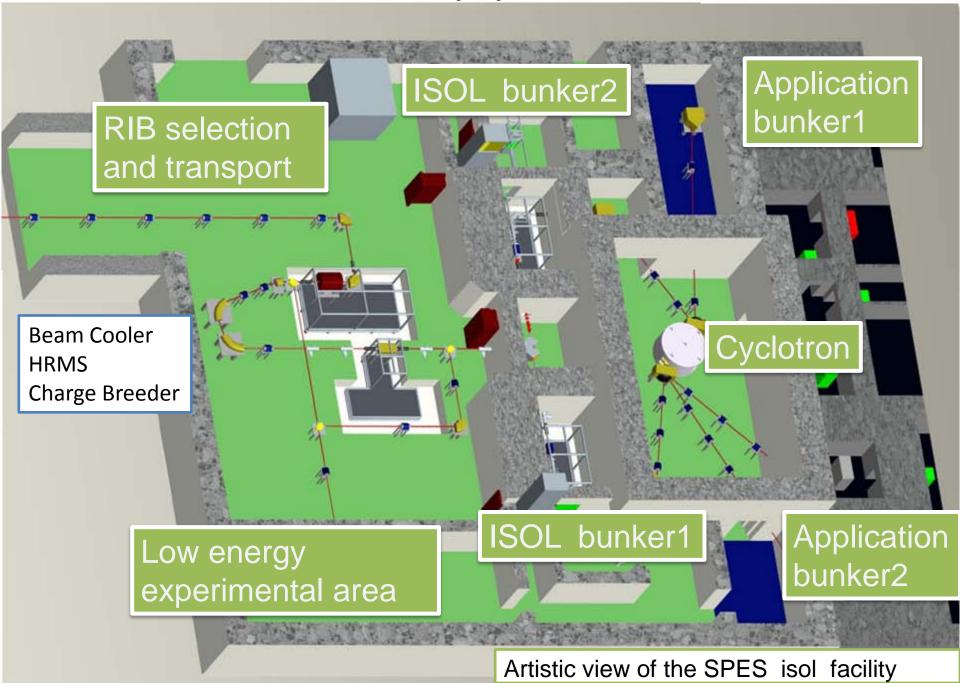
Total units: 75 persons for a total of 40 FTE

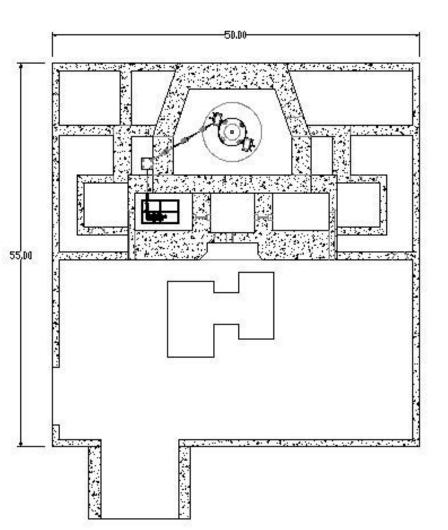


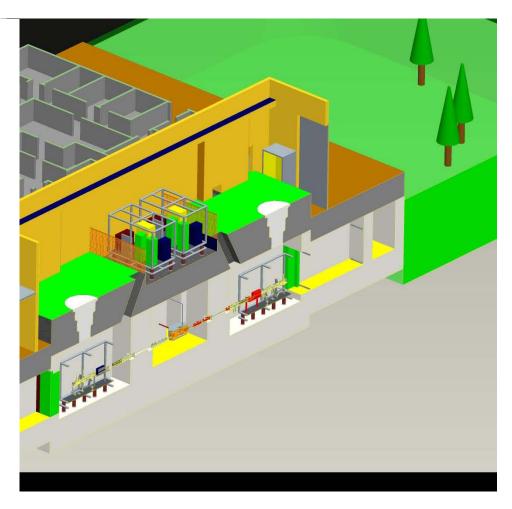
More than 200.000 m^2 1/3 occupied, 2/3 available for expansion

SPES Facility Layout

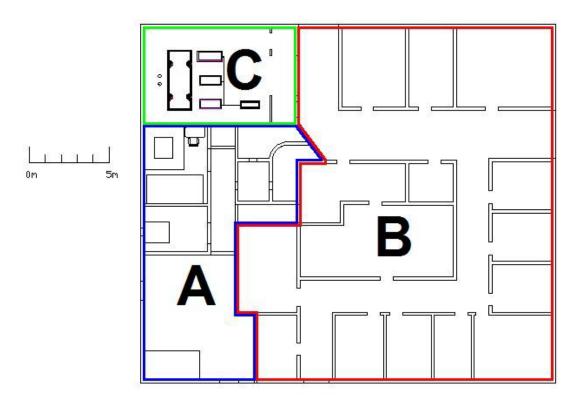
SPES layout

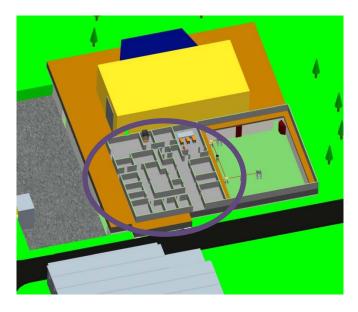

SPES phase alpha: construction of an ISOL facility able to deliver Neutron Rich beams to the ALPI linac accelerator


ISOL FACILITY


 $\overline{}$

SPES - ISOL facility layout: Level -1


Task Infrastructures


Cyclotron and ISOL bunkers

Task Infrastructures

ISOL Target laboratory

- A: UCx production and test. Class A laboratory.
- B: Ion suorce laboratory and offices.
- C: Laser laboratory.

Defined the functional description of the SPES building.

Defined the general layout, the plants needs, optimizing the space considering the people and instrumentation paths inside the facility.

A dialogue with the Infrastructures contractor is in progress to define the executive project.

Executive project expected at end of March 2011.

Building construction: 2012-2013.

SPES Cyclotron

Main Characteristics:

BeamspENERGY3.Current7.Extracted BeamsD

Beam Loss Affidability p 35-70 MeV 750 μA Dual Port Exit 300-500μA < 5% 5000 hours/year

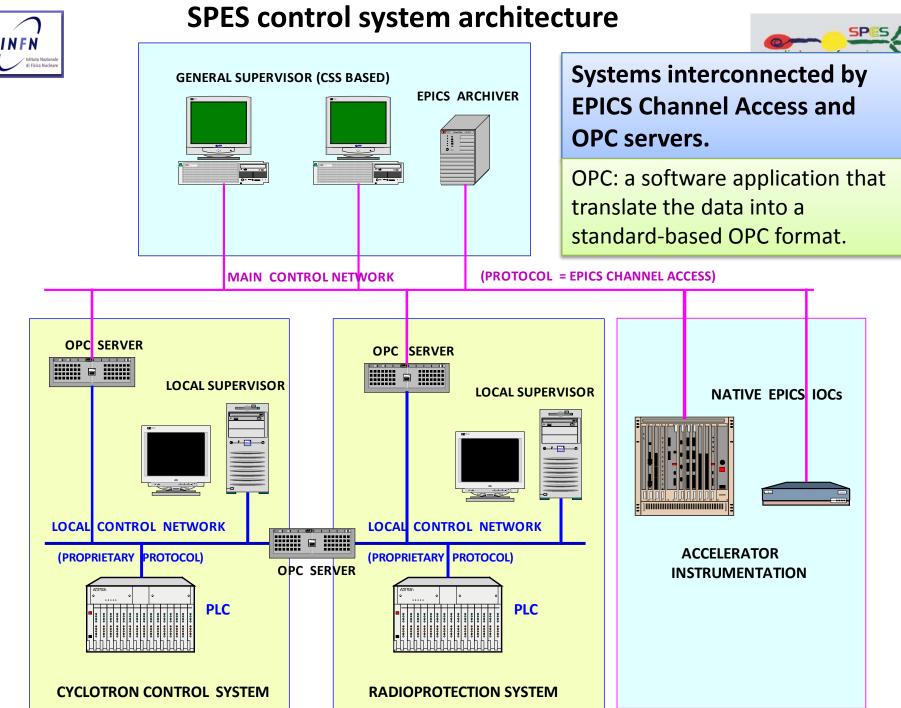
Schedule: Contract signed Oct 28th, 2010

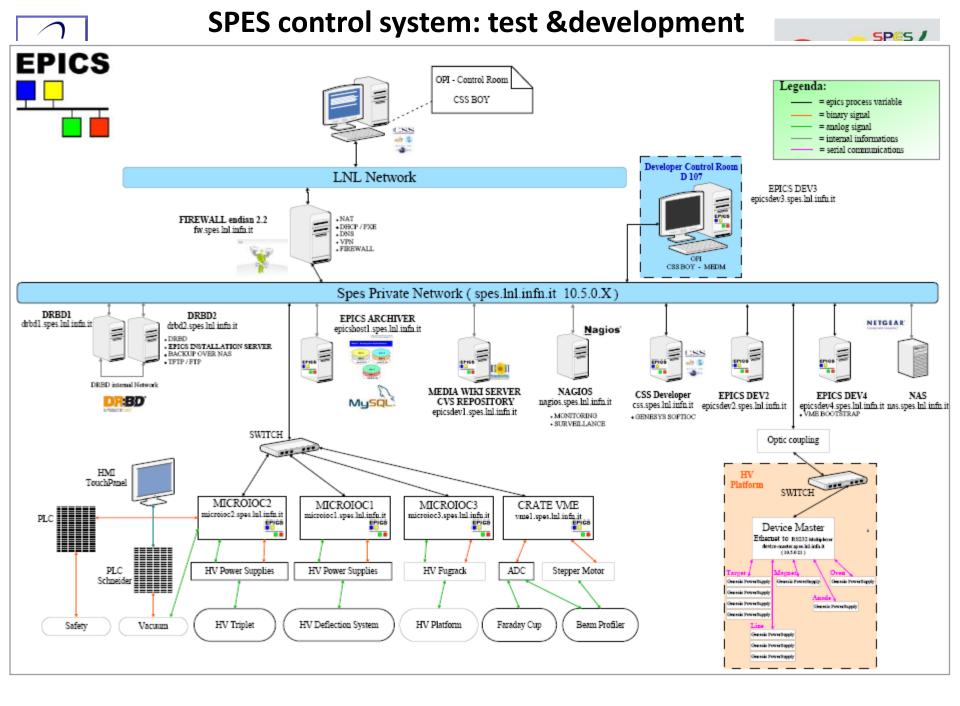
Cyclotron Delivery end 2013-2014

Great News!

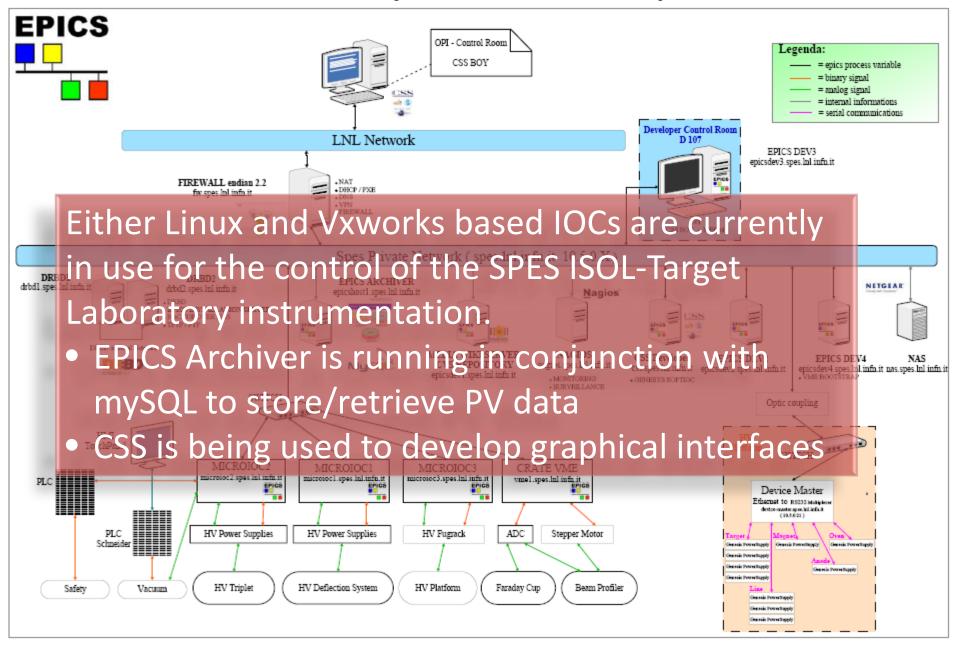
Best Cyclotran Syst

We are pleased to announce that Best Theratronics and Best Cyclotron Systems, members of TeamBest, won a bid from the Italian National Laboratory on May 4, 2010 for construction of a **70 MeV cyclotron.**


SPES control system


EPICS has been chosen as the general framework to develop the control system of SPES

> Main challenge is the integration of different hardware technologies under a common model of data and communication protocols.


Due to security requirements, a significant part of controls will be based on industrial PLCs The control of accelerator equipment and beam diagnostic instrumentation will be implemented on native EPICS IOCs (Input/Output Controllers).

SPES control system: test & development

Radio-isotopes for medicine

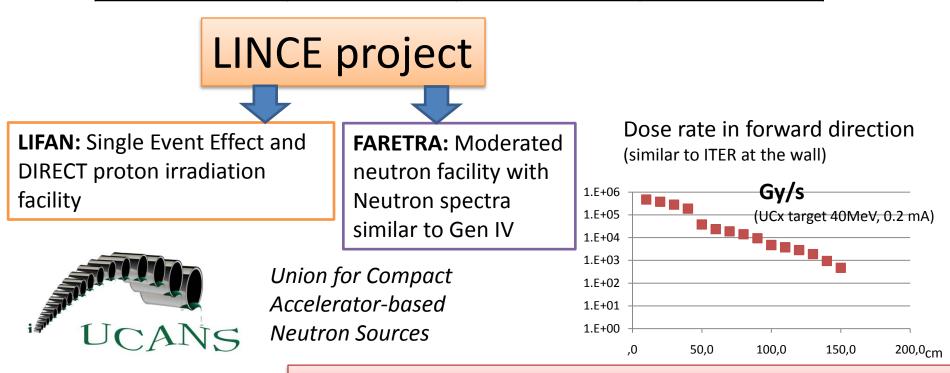
Production of radionuclides of interest for medicine using the SPES cyclotron

Table 7 – List of Isotopes Produced by Proton Accelerators of Various Energies

MeV	45 MeV		70	MeV
Half-Life	Isotope	Half-Life	Isotope	Half-Life
12.7 h	Zn-62	9.2 h	Fe-52	8.3 h
14.6 h	Co-55	17.5 h	Xe-122	20.1 h
2.58 d	Hg- 195m	41.6 h	Mg-28	21 h
3.35 d	Bi-206	6.2 d	Ba-128	2.43 d
4.2 d			Cu-67 *	2.58 d
4.28 d			Ru-97	2.79 d
36.4 d			Sn- 117m	13.6 d
106.7 d			Sr-82	25.4 d
271 d				
	Half-Life 12.7 h 14.6 h 2.58 d 3.35 d 4.2 d 4.28 d 36.4 d 106.7 d	Half-Life Isotope 12.7 h Zn-62 14.6 h Co-55 2.58 d Hg- 195m 3.35 d Bi-206 4.2 d - 36.4 d - 106.7 d -	Half-Life Isotope Half-Life 12.7 h Zn-62 9.2 h 14.6 h Co-55 17.5 h 2.58 d Hg- 195m 41.6 h 3.35 d Bi-206 6.2 d 4.2 d - - 36.4 d Image: Comparison of the second	Half-Life Isotope Half-Life Isotope 12.7 h Zn-62 9.2 h Fe-52 14.6 h Co-55 17.5 h Xe-122 2.58 d Hg- 195m 41.6 h Mg-28 3.35 d Bi-206 6.2 d Ba-128 4.2 d Image: Cu-67 mm mage: Cu-67 mm

New radio-isotopes of interest for medicine available at 70 MeV

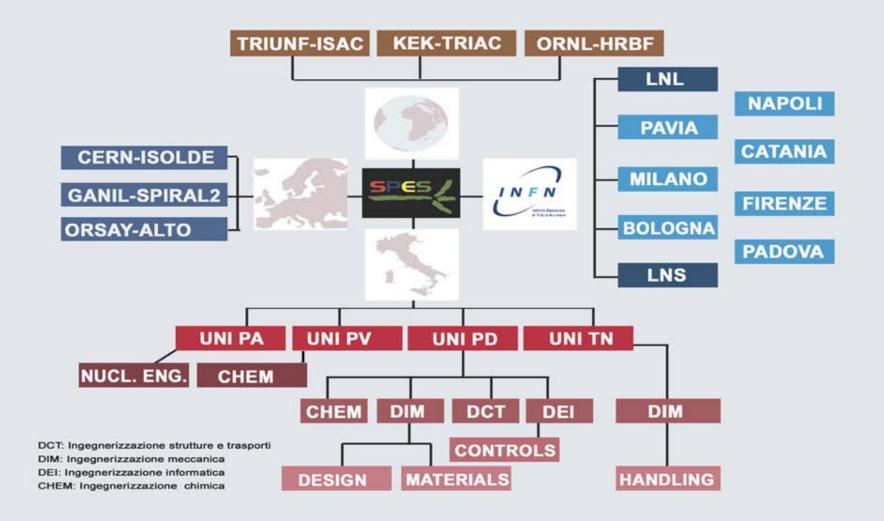
ARRONAX – SPES collaboration for Isotopes production and high-power target development



Neutron facility at the SPES Cyclotron

Integral neutron production at SPES Cyclotron Proton beam= 70 MeV, 500 μA Target = W 5mm

Energy region (MeV)	Sn (n/s) ∼ 6·10 ¹⁴ s ⁻¹	Փ _n @ 2.5 m (n cm⁻² s⁻¹)	Փ _n @ 1 cm (n cm⁻² s⁻¹)
1 < E < 10	$\sim 5.10^{14} \text{ s}^{-1}$	5×10 ⁸	3×10 ¹³
10 < E < 50	$\sim 1.10^{14} \text{ s}^{-1}$	1×10 ⁸	6x10 ¹²



Evaluated Total cost: 4Meuro (additional buildings not included)

The SPES collaborations network

SPES BEAM Characterization : Marco Cinausero

 a) tape system - slow control system, acquisition system, Installation LNS Development of Detectors for Beam Characterization and/or diagnostics
b) Production Experiments with UCx and different targets.

2. Batch Mode: Francesco Recchia

- a) Study and definition nuclear systems
- b) Production experiments (cross section, feasibility)
- c) Technology of the target/source system (collab. with TASK3)
- d) Contacts with Intern. Lab. (Oak Ridge etc.)
- **3. Nuclear Physics Experiment @existing RIB facilities: Alessia di Pietro** personnel training@ ORNL, ISOLDE etc., proposal presentations.

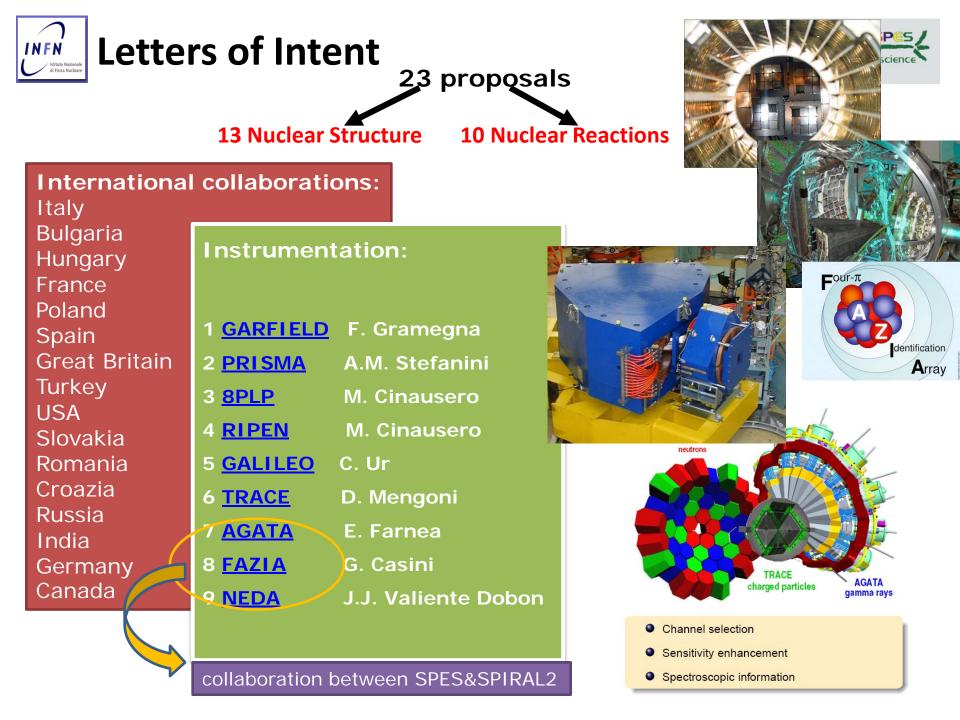
4. Production Calculations :

MCNPX e FLUKA calculations diffusion-effusion calculations with RIBO or similar

5. Communication and Scientific Documentation: Daniel R. Napoli

Web Page Conferences Communication @ INFN Communication@ LNL and LNS (personnel training) Scientific Documentation

HIGHLIGHTS 2011



- Final Definition of the Executive Project to define Buildings & Infrastuctures.
- Validation of the Construction Design of the Cyclotron.

•Study of Beam Production through the Laser Source, using the SPES ISOL Front-End in the Target Laboratory and the Pavia laser laboratory.

• Design and construction of an ISOL System to be used at LNS for in-beam production measurements.

- New Proposals of Nuclear Physics Experiments @existing RIB facilities
- Study of New Materials for the production of different ISOL targets
- Study of New Materials for the production of different densities UCx pills.
- Preparation of an upgraded TDR for the ISOL facility
- Preparation of the TDRs for the LINCE and LARAMED Applicative Projects

CONCLUSIONS

The SPES project is on the construction phase.

After this meeting a selection of beams will be defined for first-day experiments.

The support of the Nuclear Physics community is essential to complete the SPES project.