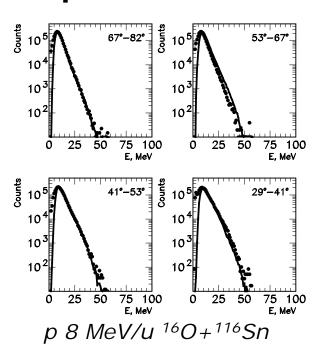
Letter of Intent for the SPES project

Pre-equilibrium emission: a tool to study dynamic effects and clustering structure in exotic nuclei

```
V.L. Kravchuk<sup>1</sup>, O.V. Fotina<sup>2</sup>, F. Gramegna<sup>1</sup>, M. Cinausero<sup>1</sup>, T. Marchi<sup>1</sup>, S.A. Goncharov<sup>2</sup>, D.O. Eremenko<sup>2</sup>, O.A. Yuminov<sup>2</sup>, Yu.L. Parfenova<sup>2</sup>, S.Yu. Platonov<sup>2</sup>, V.A. Drozdov<sup>2</sup>, M. Bruno<sup>3</sup>, M. D'Agostino<sup>3</sup>, G. Baiocco<sup>3</sup>, L. Morelli<sup>3</sup>, G. Vannini<sup>3</sup>, G. Casini<sup>4</sup>, L. Bardelli<sup>4</sup>, S. Barlini<sup>4</sup>, M. Bini<sup>4</sup>, S. Carboni<sup>4</sup>, G. Pasquali<sup>4</sup>, G. Poggi<sup>4</sup>, M. Degerlier<sup>5</sup>, S. Dogan<sup>5</sup>
```

¹INFN - Laboratori Nazionali di Legnaro, Legnaro (PD), Italy
²Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
³Dipartimento di Fisica, Universita' di Bologna and INFN sezione di Bologna, Bologna, Italy
⁴Dipartimento di Fisica, Universita' di Firenze and INFN sezione di Firenze, Firenze, Italy
⁵Neusehir University, Art and Science Faculty – Physics Department, Neusehir, Turkey

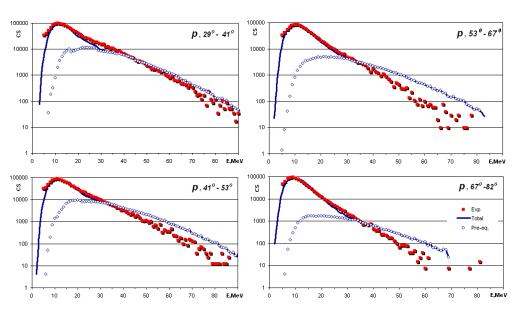
PHYSICS CASES


TO STUDY

- 1. THE CROSS-SECTIONS OF THE NEUTRON, PROTON AND ALPHA CHANNELS IN THE PRE-EQUILIBRIUM AND EVAPORATIVE EMISSION PROCESSES.
- 2. THE ALPHA PARTICLE PREFORMATION PROBABILITY IN THE COMPOUND NUCLEUS PROVIDING INFORMATION ON ALPHA-CLUSTER STRUCTURE OF THE NEUTRON-RICH NUCLEI.
- 3. ALPHA CLUSTERIZATION AND ITS INFLUENCE ON THE INITIAL EXCITON CONFIGURATION OF THE NON-EQUILIBRIUM PARTICLES IN THE EXOTIC SYSTEMS ON THE INITIAL STAGE OF THE FUSION PROCESS TESTING THE EMPIRICAL CINDRO-BETAK TREND.
- 4. THE FUNDAMENTAL NUCLEAR PHYSICS QUANTITIES LIKE NUCLEAR TEMPERATURE AND LEVEL DENSITY CONSIDERING THE EVAPORATIVE PART OF THE TOTAL EMISSION SPECTRUM.

LIGHT PARTICLE EMISSION MECHANISMS

- V.L. Kravchuk et al, Eur. Phys. Journ. WoC 2(2010)10006
- V.L. Kravchuk et al, Int. Journ. Mod. Phys. E in press 2010
- O.V. Fotina, V.L. Kravchuk et al, Phys. Atom. Nucl. 73(2010)1317
- O.V. Fotina, V.L. Kravchuk et al, Int. Journ. Mod. Phys. E 19(2010)1134
- A. Corsi, O. Wieland, V.L. Kravchuk et al, Phys. Lett. B 679(2009)197


Evaporative emission

INFORMATION ON:

- Apparent nuclear temperature
- Level density
- Average kinetic energy

Pre-equilibrium emission

p 15.6 MeV/u ¹⁶O+¹¹⁶Sn

INFORMATION ON:

- Memory of the entrance channel
- Preformation probabilities
- Clusterization in the projectile nucleus

THEORETICAL MODEL

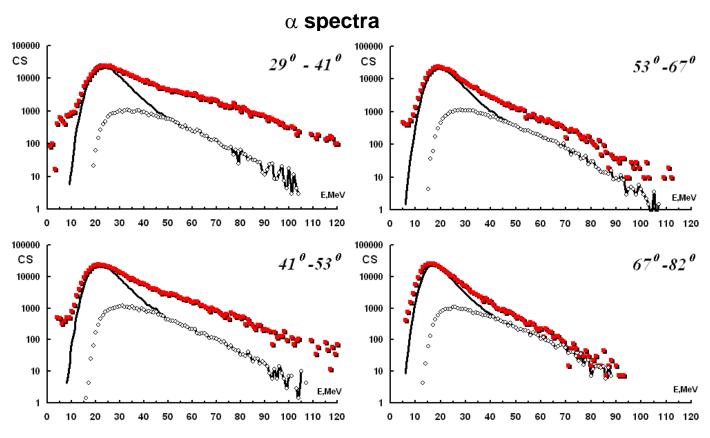
Evaporative (statistical) emission:

The method of analysis of heavy-ion reactions is based on the statistical theory of nuclear reactions using Monte-Carlo simulation of a number of characteristics of nucleus disintegration (modified PACE2 code):

- decay channel (n, p, alpha, gamma or fission);
- kinetic energy of escaping particles;
- particle escaping angels, and (or) angular momentum of emitting particles.

Probabilities of all process were estimated within Hauser-Feshbach model

Pre-equilibrium emission:

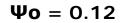

- To describe the relaxation processes in the nuclear system produced in the fusion reaction <u>Hybrid exciton model</u> based on Griffin exciton model was used {J.J. Griffin, Phys. Rev. Lett., 478, p 478 (1966)}.
- In the Hybrid exciton model, the state of the nuclear system produced by collision of bombarding particle and target nucleus is determined by the exciton number n = p + h, where p is a number of particles located above the Fermi energy and h is a number of holes located under the Fermi energy, and by excitation energy E^* . The exciton number can be determined from the empirical trend (N. Cindro et al., Phys. Rev. Lett. 66(1991)868).
- More detailed description of using method can be found in O.V. Fotina, et al. Phys. of Atomic Nuclei, Vol. 73, No 1, 2010, p. 1317 and ref. therein
- We regard as free parameter next values n, k, g.
 - \checkmark **k** is parameters, connected with transition matrix element $</M/^2>$ and determined of the transition rate of emission particle into continuum with energy $ε_b$. This parameter was varied in wide region from 200 to 800 MeV³.
 - The single particle level density g is connected with the level density parameter in the Fermi-gas model by relation $g = 6a/\pi^2$. For variation of values g we used Fermi-gas model and level-density phenomenological model {A.V. Ignatyuk, K.K. Istekov, and G.N. Smirenkin, [Yad. Fiz., 29, 875 (1979)] Sov. J. Nucl. Phys. 29, 450, 1979
 - And n is mentioned above exciton number. The initial exciton configuration (p_0, h_0) from which the equilibration process starts is the free parameter of the model. In our calculations we used next of the initial exciton configurations: $n_0 = (16p, 1h) (^{16}O + ^{116}Sn)$.

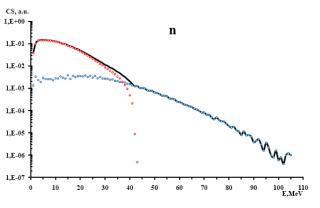
INFLUENCE OF ALPHA CLUSTERIZATION ON THE INITIAL EXCITON CONFIGURATION

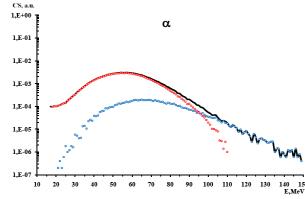
Exp. Data + Model calculation

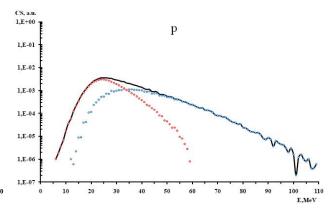
15.6 MeV/u ¹⁶O+¹¹⁶Sn (16p, 1h configuration)

 $E*/n_0=6.8+0.54(E_{CM}-V_C)/A_P$ N. Cindro et al, PRL 66(1991)868

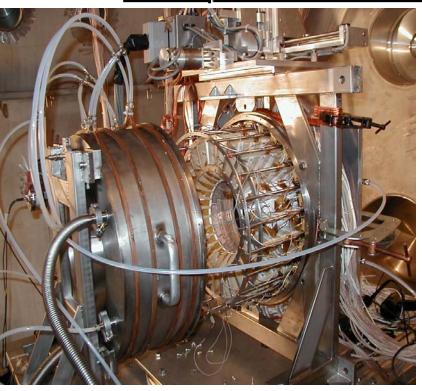


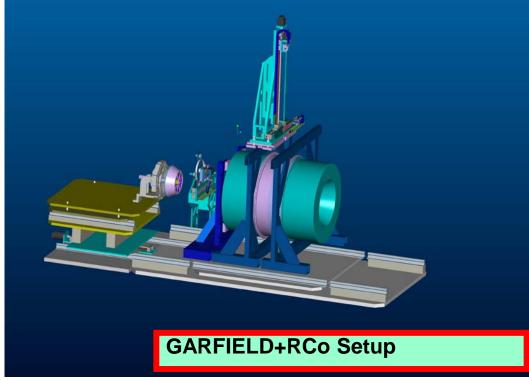

ALPHA PARTICLE PREFORMATION PROBABILITY


Model calculation


11 MeV/u ¹³²Sn+²⁷Al (27p, 2h configuration)

Ψο	M _n			M _a			M _p		
	Evap	Pre-eq	Total	Evap	Pre-eq	Total	Evap	Pre-eq	Total
0.00	11.70	0.805	12.51	0.525	0.031	0.556	0.316	0.164	0.480
0.12	11.76	0.729	12.49	0.515	0.044	0.559	0.303	0.226	0.529


ON THE REACTION CHOICE


11 MeV/u 132Sn+27AI

- ¹³²Sn beam: SPES intensity
 3.11-10⁷ particles/s
- alpha pre-equilibrium cross section (ψ_0 =0.00) σ_{PFq} =38 mbarn
- alpha particle preformation probability from analytic expression (H.F. Zhang et al, PRC 80(2009)057301) ψ_0 =0.12
- ...FEASIBLE...

GARFIELD

General ARray for Fragment Identification and Emitted Light particles in Dissipative collisions

- •High granularity (~400 Δ E-E telescopes $\vartheta \approx 4^{\circ}-150^{\circ}$)
- •Low energy thresholds (ionization chambers as ΔE)
- •Z identification: $9 \approx 4^{\circ}-150^{\circ}$
- •A and Z identification: $(1 \le Z \le 12) \vartheta \approx 4^{\circ} 20^{\circ}$ (Si-CsI digital pulse shape)

(Z=1-3) $\theta \approx 30^{\circ} - 150^{\circ}$ (CsI digital pulse-shape)

RipeN

Rivelatori per Neutroni a LNL

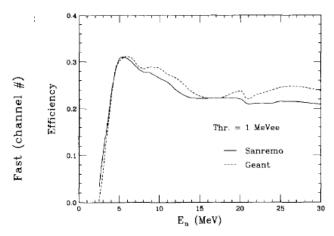
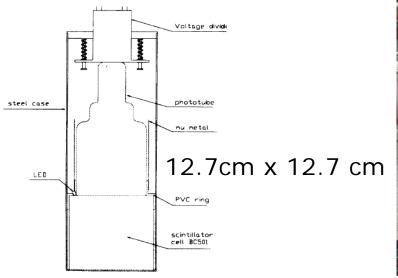
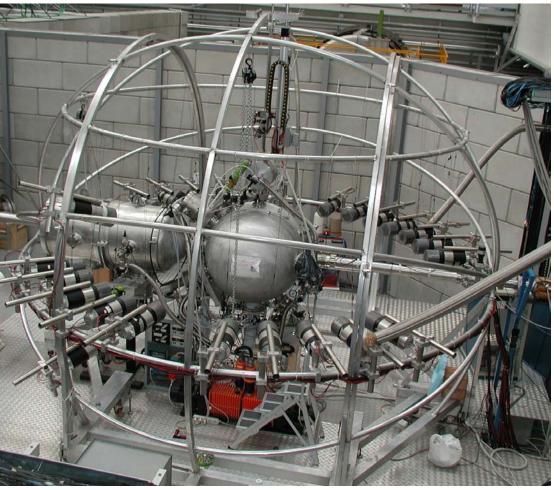




Fig. 8. Simulated efficiency of the detector as a function of the neutron energy for 1 MeV ee threshold on the light output. The solid and dashed curves are the results of SANREMO and Geant-based codes respectively.

24 BC501 cylindrical Liquid Scintillators

