Fission process: Isospin and Nucleosynthesis

A. Brondi, A. Di Nitto, G. La Rana, R. Moro, P. Nadtochy, E. Vardaci, INFN and Dipartimento di Scienze Fisiche dell'Università di Napoli, I-80126 Napoli, Italy

> M. Cinausero, G. Prete Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), Italy

> > N. Gelli, F. Lucarelli INFN Sezione di Firenze, I-50125 Firenze, Italy

- Fission as a tool to study nuclear viscosity
- Fission of neutron rich nuclei: predictions with a dynamical model
- Proposed reactions with SPES RIB's

Fusion Reactions (<10MeV/A)

Evidences of dynamical effects

Theoretical approaches: statistical model, dynamical models \rightarrow t, viscosity

Open Questions in Fission Dynamics

- 1. Fission time scale;
- Strength (β: ~(2-30)x10²¹ s⁻¹) and Nature of dissipation: one-body or two-body;
- 3. Dependence of the viscosity on the temperature and on the shape.

Study of systems of intermediate fissility with 8pLP at LNL

Langevin equations

Collective variables (shape of the nucleus) assimilated to Brownian particles interacting stochastically with a "heat bath" (internal degrees of freedom).

1-dimension Langevin equation

$$M\ddot{R} = \widetilde{F}(R) + F_{frict.}(R, \dot{R}) + F_L(R, t)$$

Conservative from FRLDM

evolution

Three dimensional Langevin equations with 1 or 2 body dissipation

ISOSPIN EFFECTS ON FISSION PROCESS

Increase of n prescission multiplicities and decrease pf cp prescission mult.

Fig. 2. The fission barriers B_f for the ¹⁹⁴Pb (solid curve), ²⁰⁰Pb (dashed curve), and ²⁰⁶Pb (dotted curve) nuclei as a function of angular momentum L.

Going to more n-rich nuclei:

M(Ks)-M(Ks=0.1)/M(Ks=0.1) in %

More constraints to obtain Ks

	B _f (L=50 ħ) (MeV)	Prescission M _n	<t<sub>fiss> (10⁻²¹ s)</t<sub>
¹²⁴ Ce	16.3	0.046	61
¹⁴⁴ Ce	29.7	2.1	10 ³

Table 1. Predictions of a dynamical model based on three dimensional Langevin equations for the composite nuclei 124Ce and 144Ce at $Ex \sim 122$ MeV and Lcrit =74 and 81 \hbar respectively. Full one body dissipation has been assumed.

Ex \cong 122 MeV and Lcrit =74 and 81 \hbar

The $8\pi LP$ setup

C <u>MAX ENERGY</u> Wall: up to 64 AMeV Ball : up to 34 AMeV

ENERGY THRESHOLDS 0.5 AMeV for p and α 2-3 AMeV for ¹²C

TRIGGERS

Fission Fragments in ring E/F/G Evaporation Residues (4 PPAC- PPAC) CORSET

