# Isomers and intermediate-spin states of 93,95,96Rb Gary Simpson LPSC Grenoble





 Experimental techniques

 Delayed γ-ray spectroscopy at neutron guides
 Prompt-fission studies with large arrays

Summary of Recent Results

 Excited states in <sup>93,95,96</sup>Rb

Future projects at JYFL

- Lack of data on singleparticle orbits outside <sup>78</sup>Ni – vh<sub>11/2</sub>
- Can extract this information from multi-quasiparticle isomers but expected T<sub>1/2</sub><500 ns</li>
- Rb nuclei good candidates to search for such isomers
- Can <sup>78</sup>Ni be used as a closed core?
- Can the shell-model reproduce the onset of defomation?



# **Use different instruments**

FIFI (FIssion Fragment Indentifier) Spectrometer (Manchester) at PF1B neutron guide



- ToF gives v
- Chamber gives K.E.
- $\rightarrow$ can get *m*

→Observe isomer decays from the mass-identified complementary fragment





Compact array of 15 Ge crystals, each ~60 % rel. eff. (UK-France loan pool + Cologne Cluster)

Lots of shielding

# Use known isomers to calibrate mass of complementary fragment measured by FIFI



Mean neutron evaporation 2.4 n/fission

### Can see and mass-identify several new isomers



#### **Isomeric half lives obtained**



G. Simpson et al. Phys. Rev. C 82 (2010) 024302

# Gate on strong, delayed lines in <sup>248</sup>Cm data -see same lines as in FIFI data set + new ones



X rays give Z of complementary (Pr) and hence Z of isomeric fragment (Rb) So isomer belongs to <sup>93</sup>Rb



Further gating gives the following level scheme

# Can get spins using ang. corr.





## Results in agreement with

PHYSICAL REVIEW C 80, 037304 (2009)

High-spin states in <sup>91,92,93</sup>Rb and <sup>155,156</sup>Pm

J. K. Hwang,<sup>1</sup> A. V. Ramayya,<sup>1</sup> J. H. Hamilton,<sup>1</sup> S. H. Liu,<sup>1</sup> K. Li,<sup>1</sup> H. L. Crowell,<sup>1</sup> C. Goodin,<sup>1</sup> Y. X. Luo,<sup>1,2</sup> J. O. Rasmussen,<sup>2</sup> and S. J. Zhu<sup>1,3</sup>

# A=95 isomer



Gate on 191 and 619-keV lines in <sup>252</sup>Cf data set

New decay scheme



Isomer originates from  $\pi g_{9/2}$  orbit

#### PHYSICAL REVIEW C 79, 064318 (2009)

#### New neutron-rich microsecond isomers observed among fission products of <sup>238</sup>U at 80 MeV/nucleon

C. M. Folden III,<sup>1,\*</sup> A. S. Nettleton,<sup>1,2</sup> A. M. Amthor,<sup>1,2</sup> T. N. Ginter,<sup>1</sup> M. Hausmann,<sup>1</sup> T. Kubo,<sup>3</sup>

W. Loveland,<sup>4</sup> S. L. Manikonda,<sup>5</sup> D. J. Morrissey,<sup>1,6</sup> T. Nakao,<sup>3,7</sup> M. Portillo,<sup>1</sup> B. M. Sherrill,<sup>1,2</sup>

G. A. Souliotis,<sup>8</sup> B. F. Strong,<sup>6</sup> H. Takeda,<sup>3</sup> and O. B. Tarasov<sup>1,9</sup>



# Shell-Model Interpretation by K. Sieja (GSI/Strasbourg)

CD-Bonn potential, G-matrix renormalization Antoine code (m-scheme) <sup>78</sup>Ni core

 $\pi$  1f<sub>5/2</sub>, 2p<sub>1/2</sub>, 1p<sub>3/2</sub>, 1g<sub>9/2</sub> v 2d<sub>5/2</sub>, 3s<sub>1/2</sub>, 2d<sub>3/2</sub>, 1g<sub>7/2</sub>, 1h<sub>11/2</sub> Up to 7 p-h excitations from Z=38, N=56

# **Shell-model Interpretation**



27/2<sup>-</sup> isomer has  $\pi g_{9/2} v(g_{7/2} h_{11/2})$  configuration

# Why does the isomeric lifetime go from 100 ns to 100 ms when going from <sup>95</sup>Y to <sup>97</sup>Y?



 $d_{5/2}$  is full, now filling  $s_{1/2} \rightarrow 27/2^-$  isomer ~1 MeV lower in energy and cannot decay to  $23/2^-$ 

Is there an equivalent 27/2<sup>-</sup> ms isomer in <sup>95</sup>Rb?





 $^{97}_{39}Y_{58}$ 

# <u>Problems with the interaction</u> -recently shown that <sup>78</sup>Ni is not a good inert core for Cu isotopes

PHYSICAL REVIEW C 81, 061303(R) (2010)

Shell quenching in <sup>78</sup>Ni: A hint from the structure of neutron-rich copper isotopes

K. Sieja and F. Nowacki





J. A. Pinston et al. Phys. Rev. C 71 (2005) 064327

# The Lohengrin Fission-Product Spectrometer





Separates according to A/q and E/q

No ion source - no chemical selectivity

Neutron flux 5×10<sup>14</sup> n/s/cm<sup>2</sup>

~2×10<sup>12</sup> fissions/s (3.5 mg of <sup>239</sup>Pu 742 b)









Previous studies in this area used beta-decay which could only populate spherical s<sub>1/2</sub>, d<sub>3/2</sub> and g<sub>7/2</sub>

# Kr nuclei



# S. Naimi *et al*. Phys. Rev. Lett. 105 (2010) 032502

# M. Keim *et al*. Nucl. Phys. A586 (1995) 219

#### Combination of Eurogam II and Lohengrin data Observation of 3 different shapes in <sup>99,101</sup>Zr and <sup>97</sup>Sr



W. Urban, J.A. Pinston *et al.* Eur. Phys. J. A **16**, 11 (2003)

v9/2[404] was assigned to these states from

Partial half-lives of decays to known states -gives spin 9/2

Angular correlations between states of known spin.

An assignment of 7/2 was rejected from branching ratios of transitions decaying out of isomeric states (Alaga rules)

v9/2[404] orbital should show little alignment (spin is along symmetry axis)

 $I_x = \sqrt{(I+1/2)^2 - K^2}$  where  $I_x$  is spin proj. on symmetry axis



#### Schematic representations of deformed configurations of odd-mass Sr and Zr isotones



**g**<sub>9/2</sub>

# Conclusions

- First delayed spectroscopy of fission products at a neutron-guide
- New isomers found and identified with T<sub>1/2</sub>~100 ns in Rb isotopes
- Shell-model interpretation works reasonably well but can be improved
- 27/2<sup>-</sup> isomer of  $^{93}\text{Rb}$  has  $\pi g_{9/2} \ \nu(g_{7/2} \ h_{11/2})$  configuration
- 9/2<sup>+</sup> isomer of <sup>95</sup>Rb has a  $\pi g_{9/2}$  configuration
- If <sup>96</sup>Kr is not strongly deformed, a new or improved explanation must be found for shape changes in the A=100 region