The AGATA Demonstrator Array at LNL: status of the project

E.Farnea

INFN Sezione di Padova On behalf of the AGATA Collaboration

- 1. Status of the installation at Legnaro
- 2. Highlights from the performed experiments

The AGATA Demonstrator Objective of the final R&D phase 2003-2008

5 asymmetric triple-clusters

36-fold segmented crystals 555 digital-channels Eff. 3 - 8 % @ M_{γ} = 1 Eff. 2 - 4 % @ M_{γ} = 30 Full EDAQ with on line PSA and γ -ray tracking In beam Commissioning First installation site: LNL

Main issue is Doppler correction capability \rightarrow coupling to beam and recoil tracking devices

AGATA Demonstrator + PRISMA

INFN - LNL

E (a.u.)

From CLARA to AGATA

Some pictures

Present status

- Commissioning (demonstration) campaign concluded end of 2009
- Experimental campaign started officially February 2010 with 3 ATCs
- Four ATCs available since April 2010
- Performance of the array very satisfactory so far (also at singles rates as high as 50 kHz!)
- ATC5: supply of good crystals way behind schedule, missing "B" crystal. Will soon be delivered as "double" cluster.

AGATA Demonstrator/1π Experimental Program

AGATA D.+PRISMA

Total Eff. ~6%

AGATA D. @ FRS

Total Eff. > 10%

AGATA D. + VAMOS + EXOGAM Total Eff. > 20%

Performed experiments (so far)

- Coulomb Excitation of the Presumably Super-Deformed Band in ⁴²Ca (A.Maj, F.Azaiez, P.Napiórkowski)
- Neutron-rich nuclei in the vicinity of ²⁰⁸Pb (Zs.Podolyák)
- Inelastic scattering as a tool to search for highly excited states up to the region of the Giant Quadrupole Resonance (R.Nicolini)
- Lifetime measurement in neutron-rich Ni, Cu and Zn isotopes (E.Sahin, M.Doncel, A.Görgen)
- Lifetime measurements of the neutron-rich Cr isotopes (J.J.Valiente-Dobón)
- Order-to-chaos transition in warm rotating ¹⁷⁴W nuclei (V.Vandone)
- Lifetime measurement of the 6.792MeV state in ¹⁵O (R.Menegazzo)

Coulomb excitation of the presumably super-deformed band in ⁴²Ca

- Goal: verify whether the structure observed in ⁴²Ca is SD as in ⁴⁰Ca and can be populated via Coulex
- Coulex of ⁴²Ca(170MeV) on ²⁰⁸Pb, detecting the backward scattered ions with DANTE
- 3 ATCs available

K. Hadyńska-Klęk,
F. Azaiez, A. Maj,
P. Napiorkowski

Coulomb excitation of the presumably super-deformed band in ⁴²Ca

The observed intensity for the 2048keV line is not consistent with the theoretical expectations from GOSIA code, suggesting that the previous assignment as a $1^- \rightarrow 0^+$ transition is wrong and that probably it originates from another 2^+ state.

Search for γ -decay of Pygmy and GQR states in ²⁰⁸Pb and ⁹⁰Zr

Inelastic Scattering ¹⁷O @20 MeV/A

Silicon Telescopes and Scintillator Array in AGATA

- > Si-pad technology: 60 (5x12) pixels
- Active area of 20x50 mm²
- Pixel area of 4x4 mm²
- > Cooled to -30 $^{\circ}C$
- E detector: 1 mm thick
- \blacktriangleright ΔE detector: 200 μm thick

3 LaBr₃:Ce detectors
Large volume (up to 9x20 cm)
20 Helena BaF₂ clusters

Lifetime measurement in neutronrich Ni, Cu and Zn isotopes

AGATA+PRISMA+differential plunger ⁷⁶Ge(577MeV) + ²³⁸U, Nb degrader

C.Louchart, E.Sahin, M.Doncel, A.Goergen

Preliminary spectra

Order-to-chaos in ¹⁷⁴W

High-Spin Fusion Evaporation ^{50}Ti on ^{128}Te @ 217 MeV, I $\geq 60\hbar$

V.Vandone

energy [keV]

Helena BaF₂ Multiplicity Filter in AGATA

27 detectors: 5 clusters of BaF_2 (3"×3", exagonal) Distance from the target: 15cm Total solid angle: 25% of 4π Total efficiency: 16% @ 500keV

Lifetime measurement of the 6.792MeV state in ¹⁵0

Direct measurement of the lifetime of the $3/2^+$ state in ${}^{15}O$ with the Doppler Shift Attenuation technique using the AGATA Demonstrator. The width (lifetime) of this state might affect significantly the estimates of the cross section of the astrophysically relevant ${}^{14}N(p,\gamma){}^{15}O$ reaction to the Gamow peak region.

> C.Michelagnoli, R.Depalo, R.Menegazzo, C.A.Ur

¹⁴N(32MeV)+²H ¹⁹⁷Au deuterated target

Ongoing data analysis

Approved experiments

- Precision lifetime study in the Neutron-rich N=84 isotone ¹⁴⁰Ba from DSAM measurements following Coulomb-barrier alpha-transfer reactions on a ¹³⁶Xe (J.Leske)
- Structure beyond the N=50 shell closure in neutron-rich nuclei in the vicinity of ⁷⁸Ni: The case of N=51 nuclei (D.Verney, G.Duchene, G.de Angelis)
- Lifetimes of intruder states in N~20 sd-pf-shell neutron-rich Nuclei (F.Haas, R.Chapman)
- RDDS lifetime measurement in the region of the neutron-rich doubly magic ¹³²Sn: Lifetime of the 6+ state in ¹³⁶Te (A.Gadea)
- Development of the nuclear structure of neutron-rich isotopes in the Z»38 region populated by heavy-ion induced fission (C.A.Ur, N.Mărginean, E.Merchan)
- Confirmation of the molecular structure of excited bands in ²¹Ne (C.Wheldon)

Outlook

- Following the commissioning campaign, the physics campaign has started in February 2010
- Performance of the array is satisfactory, in close coupling with several ancillary devices
- Analysis of the experiments performed so far is ongoing, exciting results soon