Radioactive Beams at the HRIBF

- Introduction to HRIBF and layout
- Radioactive Ion Beams
 - RIB production targets
 - Beams available
 - Purification techniques
- Facility upgrades
- Recent physics highlights

Dan Stracener

SPES2010 International Workshop

November 15 - 17, 2010

Holifield Radioactive Ion Beam Facility (HRIBF)

- Produces high-quality post-accelerated beams of unstable nuclei
 - Radioactive ion beams (RIBs) using ISOL technology
- A national user facility for RIB science
 - Developed out of existing accelerator complex [relatively low cost]
 - Users group has 570 members
 - Operates 5 day 24 hour schedule
 - 1500 1900 hours of RIB per year
 - 4500 5000 total operation hours per year
- Only facility of its type in the US
- Has capabilities that are unique worldwide
- Helping to develop the ISOL technique for RIB production
 - Pioneering techniques, developing technology
 - Helping to develop, maintain a user base for a next-generation facility

HRIBF Core Science Programs

- Astrophysics
 - Reactions relevant to explosive nucleo-synthesis
- Nuclear structure and reactions
 - Reactions in very neutron-rich systems
 - Decay spectroscopy
- ISOL science and technology
 - RIB ion sources
 - RIB production targets
 - Techniques to enhance RIB quality (intensity and purity)

Schematic of RIB Production at the HRIBF

4 Managed by UT-Battelle for the U.S. Department of Energy

Accelerators at the Holifield Radioactive Ion Beam Facility

- HRIBF has 3 Primary Systems must operate concurrently to deliver RIBs
- Can also operate independently stable beams from Tandem to experiments
- The cyclotron is a variable-energy, multi-particle accelerator
- Tandem provides high quality beam with easy energy variability

5 Managed by UT-Battelle for the U.S. Department of Energy

Effects of using 50 MeV ¹H beams for RIB production

- Low beam energy → short range in targets
 - typically, a few g/cm² for protons
 - for p-rich, use compound nucleus reactions
 - large σ (100's mb) at specific resonant energies
 - limited to products close to the target nucleus
 - for n-rich (fission), yield proportional to target thickness
 - high local power density in target

Characteristics of Tandem Post-accelerator

- Simple, reliable, economical
- Wide range of operating voltage
 - 1MV 26 MV
 - beam energy easily changed
- Large Acceptance
 - well suited to RIB source emittance
 - weak dependence on injection E
 - trans. eff. 15%-50% for gas stripping
- Excellent beam quality
 - good energy resolution ($E/\Delta E > 10^4$)
 - low emittance (0.3-1.0 π mm mrad)
- Must double strip for A>80
 - to reach E/A~5 MeV/amu (up to A~140)
- Negative-ion accelerator

7 Managed by UT-Battelle for the U.S. Department of Energy

RIB Production Targets

- HfO₂ fibers (production of ¹⁷F and ¹⁸F)
- Uranium carbide (production of n-rich beams via proton-induced fission)
- Molten metals
 - germanium for production of As, Ga, and Se isotopes
 - nickel for production of Cu isotopes
- Ni pellets (56Ni via (p,p2n) reaction 56Co contamination)
- Cerium sulfide (production of ³³Cl and ³⁴Cl)
 - thin layers deposited on W-coated carbon matrix
- Silicon carbide (production of ²⁵Al and ²⁶Al)
 - fibers (15 μm), powder (1 μm), thin layers on carbon matrix, solid discs
 - also developing metal silicides (e.g. Nb₅Si₃ disks)
- Aluminum oxide (production of ²⁶Si and ²⁷Si)
 - thin fibers (6μ m) with sulfur added for transport
- ⁷Be, ¹⁰Be, ^{26g}AI, ⁸²Sr sputter targets
 - mixed with copper, silver, or niobium powders

HfO₂ Target Assembly

 $-Al_2O_3$

9

¹⁶O(d,n)¹⁷F & ¹⁶O(α,pn)¹⁸F

UC/RVC Fabrication Process

- Saturate RVC matrix with uranyl nitrate solution
 - Reticulated vitreous carbon (RVC) material supplied by ERG Materials and AeroSpace Corporation, Oakland, CA, USA
 - Fiber diameter is 60 μm, density is 0.06 g/cm³, UC₂ coating is about 10 μm
- Heat to 300 C for a few hours (convert to uranium oxide)
- Repeat until the desired mass of uranium is achieved (about 1.2 g/cm³)
- Heat to 2000 C (convert to uranium carbide and sinter)
- Density varies from 0.6 1.4 g/cm³

Uncoated RVCF

UC₂ Coated RVCF Thickness: ~10 μm

Pressed-powder UC targets at HRIBF

- UC targets are fabricated by ORNL personnel in the Materials Science & Technology Division
 - uranyl nitrate solution is mixed with graphite powder and heated to 1925 C to form UC₂
 - UC₂ is ground down to ~ 3-micron diameter powder
 - This UC₂ powder is mixed with a customized graphite powder
 - 64% natural graphite (Graftech)
 - 16% synthetic graphite (SGL Carbon KRB2000)
 - 20% resin (Durite SC-1008)
 - The mixture is pressed at low pressure and heated to 350 C for a few hours
 - The disk is then sintered at about 1800 C for about 4 hours in a vacuum furnace
 - Density is about 2.2 g/cm³
 - Compared to the UC/RVC targets
 - The cost is low
 - Excellent reproducibility

Recent yields from the UC_x pressed-powder targets

Isotope	T _{1/2} (secs)	Expected rate (pps) from UC/RVC targetDelivered RIB (pps) from UC/C target		Ratio of yields
⁷⁶ Cu	0.65	150	200 – 300	2
⁷⁷ Cu	0.46	20	15 – 30	1.5
⁷⁸ Cu	0.35	1.5	1 – 3	2
⁸³ Ga	0.30	20	60	3
⁸⁴ Ga	0.08	1.9	0.5 – 2.7	1.4
⁷⁸ Ge	88	2 x 10 ⁶	1 x 10 ⁶	0.5
⁸⁰ Ge	29.5	2 x 10 ⁵	1 x 10 ⁵	0.5
⁸⁴ Se	186	8000	25000	3.1
¹³⁰ Sn	223	5 x 10 ⁵	2 x 10 ⁵	0.4
¹³² Sn	39.7	1.2 x 10 ⁵	5 x 10 ⁴	0.4
¹³⁴ Sn	1.04	700	300 – 700	1
¹³² Te	2.8 x 10 ⁵	4 x 10 ⁷	6 x 10 ⁷	1.5
¹³⁴ Te	2520	3 x 10 ⁵	3.3 x 10 ⁵	1.1

2010 test with UC₂ targets from SPES

- Seven UC₂ samples prepared by University of Padova group
- Densities in the range of 4.2 g/cm³
- Used the SPES design where the disks are separated to allow for enhanced radiation to the walls of the container
- Heated to 2000° C for about two weeks without any out-gassing or obvious change in structure (samples observed after the on-line test)

Recent test with UC₂ targets from SPES

- Yield measurements were made at the HRIBF using low intensity proton beams from the Tandem (40 MeV, 50 nA)
- Measured beam intensities of 20 elements (several isotopes each) at 3 target temperatures (1600°, 1800°, and 2000° C)
- On-line analysis indicates these targets performed as well as lower density targets presently in use at HRIBF (fiber and pressed-powder)
- Complete analysis of the yield data is continuing

Production Rate of Fission Fragments in the HRIBF UC target using 12 μ A of 50 MeV protons

15 Managed by UT-Battelle for the U.S. Department of Energy

Low-energy Neutron-rich Radioactive Ion Beams (directly from the HRIBF ion source)

16 Managed by UT-Battelle for the U.S. Department of Energy

Accelerated Neutron-rich Radioactive Ion Beams (over 160 beams with intensities ≥10³ ions/sec)

HRIBF Beams

18 Managed by UT-Battelle for the U.S. Department of Energy

Radioactive Beams

- Three factors affect the quality of the radioactive beam experiment
 - RIB intensity
 - purity of the beam
 - selectivity of the detectors
- The RIB intensity can be increased by
 - increased production (target)
 - faster diffusion and release (target)
 - higher ionization efficiency (ion source)
 - better transmission (emittance)
- The beam purity can be improved using
 - ion sourcery (selective ionization, temperatures, ...)
 - chemistry (molecular ion transport, wall materials, …)
 - high-resolution mass separation
- Detectors must be efficient, selective, and designed for low intensities with relatively high backgrounds from decay of the beam

Pure Sn and Ge Beams

- Most of the neutron-rich Sn beams are contaminated
 - the A=132 beam is 85% Te, 14% Sb, 1% Sn
- Solution: extract from EBP ion source as SnS⁺ (add sulfur as H₂S gas)
- Yields of TeS⁺ or SbS⁺ ions are reduced by >10⁴
 - these molecules breakup at temperatures below 1500 C
- Convert SnS⁺ to Sn⁻ in a Cs-vapor cell
- Energy spread is ~400 eV (molecular breakup)
- Purified Ge beams are also available
 - for A=80, the Se beam was reduced by a factor of 300
 - ⁸⁰Ge beam purity went from 6% up to 95%

Use of lasers on the IRIS2 Platform

Laser Ion Source Measurements

- Ion beams of 13 elements have been produced using the RILIS at HRIBF which includes a system of three Nd:YAG pumped Ti:Sapphire lasers. These lasers have the optics for doubling, tripling, and quadrupling the frequency.
- 9 of these elements were ionized for the first time with Ti:Sapphire lasers

Element	Sn	Ni	Ge	Cu	Со	Ga	Mn	Fe	AI	Но	Tb	Dy	Sr
Efficiency Measured (%)	22	2.7	3.3	2.4	>20					40			

Y. Liu, et al., *Nucl. Instr. and Meth. B* 243 (2006) 442-452
T. Kessler, et al., *J. Phys. B* 40 (2007) 4413-4432
Y. Liu, et al., *Rev. Sci. Instrum.* 80, 083304 (2009)

Isobar Suppression by Photodetachment

There are a number of negative RIBs for which photodetachment can be used to selectively suppress the isobar contaminants.

A novel technique has been developed:

- A gas-filled RFQ ion cooler is used to slow down the negative RIB so that the interaction time with the laser beam is about 1ms.
- The laser energy must be greater than the electron affinity (EA) of the contaminant and, ideally, less than the EA of the RIB of interest.

RIBs of particular interest: (⁵⁶Ni, ⁵⁶Co), (^{17,18}F,^{17,18}O), (^{33,34}Cl, ^{33,34}S)

Y. Liu, J.R. Beene, C.C. Havener, and J.F. Liang, Appl. Phys. Lett. 87 (2005) 113504

Beam purification by photodetachment in RFQ Ion Cooler

Negative Ion	EA (eV)	Transmission (%)		
0	1.461	24 ± 2		
F	3.399	36 ± 2		
Ni	1.156	52 ± 3		
S	0.661	49 ± 3		
CI	3.617	54 ± 2		
Cu	1.228	52 ± 2		

Collaborations for ISOL development

- Mainz, TRIUMF (laser ion source, Ti:Sapphire lasers)
- Legnaro SPES (UC target tests, target characterization)
 - Plan to test a UC target with carbon nanotubes in Spring 2011
- ISOLDE (high density UC target tests October, 2010)
- ORNL Isotopes program (cross-section and branching ratio measurements)
- LLNL (novel actinide materials for RIB production)
- MSU (EBIT charge breeder)

Injector for Radioactive Ion Species 2 (IRIS2)

- **IRIS2** construction is complete •
- \$5 M budget •
- Awaiting final RIB commissioning •

98 D15,0 ନ C115 C116 IRIS2 ARGET ROOM On-Line Test Facility RMST106 Ŧ C112 T105 TANDEM ISOBAR SEP. ≞ . . The second secon Ion Source Fabrication RMS Facility 20 FEET COUNTING ППП ROOM C113 IRIS2 ELECTRONICS ROOM ₩ater system

Experimental System Upgrades

- New/Improved experimental tools
 - LeRIBSS
 - Addition to decay spectroscopy capability
 - Beam direct from IRIS target-ion source, positive ions, uses isobar separator
 - Decay spectroscopy program is attracting numerous students
 - ORRUBA silicon array
 - Benefits from NNSA Stockpile Stewardship program (Rutgers/ORAU)
 - Close collaboration with HRIBF astrophysics group
 - Large group of students
- Additional tools under development
 - MTAS: total absorption spectrometer
 - VANDLE and 3Hen neutron arrays
 - ORISS multi-pass time of flight isomer separator and spectrometer
- GRETINA (plan to host this detector starting in late 2012)
 - Opportunity to host national facility for gamma spectroscopy
 - Opportunity to collaborate with leading outside experts in this area

Driver Accelerator Upgrade Proposal

- Replace ORIC with a commercial cyclotron
 - One possible solution is the 70 MeV machine manufactured by IBA
 - Better performance than any ORIC upgrade scenario
 - Large increase in RIB production rates (combined with target development)
 - Much improved reliability (effect on both p- and n-rich beams)
 - Lower operating cost (15% of ORIC)
 - Offers medical isotope R&D option (dual extraction)
 - No new construction, except for the isotope program

Machine Specifications (courtesy of IBA)

- Multiple beam capability, variable energy
- 750 μ A proton, variable up to 70 MeV, dual port, H⁻ with foil extraction
- >50 µA deuteron, variable up to 35 MeV, dual port, D⁻ with foil extraction
- -~ ~50 μA alpha, fixed at 70 MeV, single port, ⁴He^++ with deflector extraction

C70 Vault and Isotopes Production Vault

29 Managed by UT-Battelle for the U.S. Department of Energy

Pioneering nuclear astrophysics studies First direct measurement of ${}^{17}F(p,\gamma)$ and ¹⁸F synthesis

J.F. Liang et al., Phys. Lett. B 681, 22 (2009): Coulomb dissociation of ¹⁷F
G. Hagen et al., Phys. Rev. Lett. 104, 182501 (2010): Ab Initio coupled-cluster computation of the ¹⁷F proton halo state

¹⁸Ne capture reaction

intensity

1150

Pioneering nuclear astrophysics studies Rapid neutron capture process (d,p) studies

- ¹³²Sn(d,p)¹³³Sn [Kate Jones et al. Nature 465(2010)454]
 - Observed new state at 1408 keV
 - Normalized angular distributions for g.s. and 854 keV states
 - Indicates I=3 transfer for g.s. (as expected)
 - compatible with I=1 state for 854 keV state
- ¹³⁰Sn(d,p)¹³¹Sn [Ray Kozub et al.]
 - Previously unobserved states
 - Relative locations very similar to those in ¹³³Sn
 - Significant astrophysical impact
- ¹³⁴Te(d,p)¹³⁵Te [Steve Pain et al.]
 - Single particle strengths more fragmented
 - Have preliminary candidate for f_{5/2} strength (1.8 MeV)

β-decay Studies in the heavy Cu isotopes

- J.A. Winger et al., Phys. Rev. Lett. 102, 142502 (2009): β-delayed neutron branching ratios for nuclei near doubly magic ⁷⁸Ni
 J.A. Winger et al., Phys. Rev. C 81, 044303 (2010): possible new spherical subshell
- closure at N=58 created by the nearly degenerated v3s_{1/2} and v2d_{5/2} orbitals S. V. Ilyushkin et al., Phys. Rev. C 80, 054304 (2009): $\pi 1f_{5/2}$ g.s. in ⁷⁷Cu
- S. V. Ilýushkin et al., submitted to Phys. Rev. C: β decay studies of ⁷⁵Cu and the structure of ⁷⁵Zn

