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Holifield Radioactive Ion Beam Facility (HRIBF)

• Produces high-quality post-accelerated beams of unstable nuclei
–

 

Radioactive ion beams (RIBs) using ISOL technology

•
 

A national user facility for RIB science
–

 

Developed out of existing accelerator complex [relatively low cost]

–

 

Users group has 570 members

–

 

Operates 5 day 24 hour schedule 
•

 

1500 – 1900 hours of RIB per year
•

 

4500 – 5000 total operation hours per year

•
 

Only facility of its type in the US
•

 
Has capabilities that are unique worldwide 

•
 

Helping to develop the ISOL technique for RIB production
–

 

Pioneering techniques, developing technology

–

 

Helping to develop, maintain a user base for a next-generation facility
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HRIBF Core Science Programs

•

 

Astrophysics
–

 

Reactions relevant to explosive nucleo-synthesis

•

 

Nuclear structure and reactions
–

 

Reactions in very neutron-rich systems
–

 

Decay spectroscopy

•

 

ISOL science and technology
–

 

RIB ion sources
–

 

RIB production targets
–

 

Techniques to enhance RIB quality (intensity and purity)
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Schematic of RIB Production at the HRIBF
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•

 

HRIBF has 3 Primary Systems – must operate concurrently to deliver RIBs

•

 

Can also operate independently – stable beams from Tandem to experiments

•

 

The cyclotron is a variable-energy, multi-particle accelerator

•

 

Tandem provides high quality beam with easy energy variability

Accelerators at the 
Holifield Radioactive Ion Beam Facility

ORIC (k=100)
RIB Injectors

Tandem (25 MV)

1961

1996 and 2010

1980
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Effects of using 50 MeV 1H beams for RIB production

•
 

Low beam energy short range in targets
–

 
typically, a few g/cm2 for protons

–
 

for p-rich, use compound nucleus reactions
•

 

large σ (100’s mb) at specific resonant energies
•

 

limited to products close to the target nucleus
–

 
for n-rich (fission), yield proportional to target thickness 

–
 

high local power density in target

24 mm
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•

 

Simple, reliable, economical
•

 

Wide range of operating voltage
–

 

1MV - 26 MV
–

 

beam energy easily changed
•

 

Large Acceptance
–

 

well suited to RIB source emittance
–

 

weak dependence on injection E
–

 

trans. eff. 15%-50% for gas stripping
•

 

Excellent beam quality
–

 

good energy resolution (E/ΔE >104)
–

 

low emittance (0.3-1.0 π mm mrad)

•

 

Must double strip for A>80
–

 

to reach E/A~5 MeV/amu (up to A~140)
•

 

Negative-ion accelerator

Characteristics of Tandem  
Post-accelerator
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•

 

HfO2 fibers (production of 17F and 18F)
•

 

Uranium carbide (production of n-rich beams via proton-induced fission)
•

 

Molten metals
–

 

germanium for production of As, Ga, and Se isotopes
–

 

nickel for production of Cu isotopes
•

 

Ni pellets (56Ni via (p,p2n) reaction – 56Co contamination)
•

 

Cerium sulfide (production of 33Cl and 34Cl)
–

 

thin layers deposited on W-coated carbon matrix
•

 

Silicon carbide (production of 25Al and 26Al)
–

 

fibers (15 μm), powder (1 μm), thin layers on carbon matrix, solid discs
–

 

also developing metal silicides (e.g. Nb5 Si3 disks)
•

 

Aluminum oxide (production of 26Si and 27Si)
–

 

thin fibers (6μm) with sulfur added for transport
•

 

7Be, 10Be, 26gAl, 82Sr sputter targets
–

 

mixed with copper, silver, or niobium powders

RIB Production Targets
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2μm

HfO2 Target Assembly

Beam

HfO2

Al2O3

16O(d,n)17F  &  16O(α,pn)18F
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•

 

Saturate RVC matrix with uranyl nitrate solution
–

 

Reticulated vitreous carbon (RVC) material supplied by ERG Materials and AeroSpace 
Corporation, Oakland, CA, USA

–

 

Fiber diameter is 60 μm, density is 0.06 g/cm3, UC2 coating is about 10 μm

•

 

Heat to 300 C for a few hours (convert to uranium oxide)

•

 

Repeat until the desired mass of uranium is achieved (about 1.2 g/cm3)

•

 

Heat to 2000 C (convert to uranium carbide and sinter)

•

 

Density varies from 0.6 - 1.4 g/cm3

UC/RVC Fabrication Process
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•

 

UC targets are fabricated by ORNL personnel in the Materials Science & 
Technology Division
–

 

uranyl nitrate solution is mixed with graphite powder and heated to 1925 C to form UC2

–

 

UC2 is ground down to ~ 3-micron diameter powder
–

 

This UC2 powder is mixed with a customized graphite powder
•

 

64% natural graphite (Graftech)
•

 

16% synthetic graphite (SGL Carbon KRB2000)  
•

 

20% resin (Durite SC-1008)

–

 

The mixture is pressed at low pressure and heated to 350 C for a few hours
–

 

The disk is then sintered at about 1800 C for about 4 hours in a vacuum furnace
–

 

Density is about 2.2 g/cm3

–

 

Compared to the UC/RVC targets
•

 

The cost is low
•

 

Excellent reproducibility

Pressed-powder UC targets at HRIBF
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Recent yields from the UCx pressed-powder targets

Isotope T1/2 (secs) Expected rate (pps) 
from UC/RVC target 

Delivered RIB (pps) 
from UC/C target

Ratio of yields

76Cu 0.65 150 200 – 300 2
77Cu 0.46 20 15 – 30 1.5
78Cu 0.35 1.5 1 – 3 2
83Ga 0.30 20 60 3
84Ga 0.08 1.9 0.5 – 2.7 1.4
78Ge 88 2 x 106 1 x 106 0.5
80Ge 29.5 2 x 105 1 x 105 0.5
84Se 186 8000 25000 3.1

130Sn 223 5 x 105 2 x 105 0.4
132Sn 39.7 1.2 x 105 5 x 104 0.4
134Sn 1.04 700 300 – 700 1
132Te 2.8 x 105 4 x 107 6 x 107 1.5
134Te 2520 3 x 105 3.3 x 105 1.1
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2010 test with UC2 targets from SPES

•
 

Seven UC2 samples prepared by University of Padova group
•

 
Densities in the range of 4.2 g/cm3

•
 

Used the SPES design where the disks are separated to allow for 
enhanced radiation to the walls of the container

•
 

Heated to 2000° C for about two weeks without any out-gassing or 
obvious change in structure (samples observed after the on-line test)
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Recent test with UC2 targets from SPES
•

 
Yield measurements were made at the HRIBF using low intensity 
proton beams from the Tandem (40 MeV, 50 nA)

•
 

Measured beam intensities of 20 elements (several isotopes each) at 
3 target temperatures (1600°, 1800°, and 2000° C)

•
 

On-line analysis indicates these targets performed as well as lower 
density targets presently in use at HRIBF (fiber and pressed-powder)

•
 

Complete analysis of the yield data is continuing
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Production Rate of Fission Fragments in the 
HRIBF UC target using 12 μA of 50 MeV protons

5×1011 fissions/sec
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Low-energy Neutron-rich Radioactive Ion Beams
(directly from the HRIBF ion source)

•

 

Positive-ion beams available from either 
production platform (IRIS1 or IRIS2)

•

 

Beam energy from 40 keV up to 200 keV

•

 

Negative ions may be used
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Accelerated Neutron-rich Radioactive Ion Beams
(over 160 beams with intensities ≥103 ions/sec)  

Energy Energy ≥≥
 

3 MeV/3 MeV/amuamu
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175 post-accelerated RIB species available 
–

 

32 proton-rich species
–

 

143 neutron-rich species 
(+26 more non-post-accelerated)

Radioactive beam list increased by ~60% since 2003

HRIBF Beams
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Radioactive Beams

•

 

Three factors affect the quality of the radioactive beam experiment
–

 

RIB intensity
–

 

purity of the beam
–

 

selectivity of the detectors
•

 

The RIB intensity can be increased by
–

 

increased production (target)
–

 

faster diffusion and release (target)
–

 

higher ionization efficiency  (ion source)
–

 

better transmission (emittance)
•

 

The beam purity can be improved using
–

 

ion sourcery (selective ionization, temperatures, …)
–

 

chemistry (molecular ion transport, wall materials, …)
–

 

high-resolution mass separation
•

 

Detectors must be efficient, selective, and designed for low intensities with relatively 
high backgrounds from decay of the beam
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Pure Sn and Ge Beams
•

 

Most of the neutron-rich Sn beams are contaminated
–

 

the A=132 beam is 85% Te, 14% Sb, 1% Sn
•

 

Solution: extract from EBP ion source as SnS+ (add sulfur as H2 S gas)
•

 

Yields of TeS+ or SbS+ ions are reduced by >104

–

 

these molecules breakup at temperatures below 1500 C
•

 

Convert SnS+ to Sn- in a Cs-vapor cell
•

 

Energy spread is ~400 eV (molecular breakup)

•

 

Purified Ge beams are also available
–

 

for A=80, the Se beam was reduced by a factor of 300
–

 

80Ge beam purity went from 6% up to 95%

Ga
Ge

Se
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Gas-filled RFQ for 
cooling negative ions

Lasers

RIB production target and ion source

Use of lasers on the IRIS2 Platform
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Laser Ion Source Measurements

Ion beams of 13 elements have been produced using 
the RILIS at HRIBF which includes a system of three 
Nd:YAG pumped Ti:Sapphire lasers.  These lasers have 
the optics for doubling, tripling, and quadrupling the 
frequency.

9 of these elements were ionized for the first time with 
Ti:Sapphire lasers

Ga

40>202.43.32.722Efficiency 
Measured (%)

DyTbHoAlFeMnCoCuGeNiSnElement Sr

Y. Liu, et al., Nucl. Instr. and Meth. B

 

243 (2006) 442-452
T. Kessler, et al., J. Phys. B

 

40 (2007) 4413-4432
Y. Liu, et al., Rev. Sci. Instrum.

 

80, 083304 (2009)
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There are a number of negative RIBs for which photodetachment can 
be used to selectively suppress the isobar contaminants.
A novel technique has been developed: 

•

 

A gas-filled RFQ ion cooler is used to slow down the 
negative RIB so that the interaction time with the laser beam 
is about 1ms.

•

 

The laser energy must be greater than the electron affinity 
(EA) of the contaminant and, ideally, less than the EA of the 
RIB of interest. 

RIBs of particular interest:  (56Ni, 56Co), (17,18F,17,18O), (33,34Cl, 33,34S)

Isobar Suppression by Photodetachment

Y. Liu, J.R. Beene, C.C. Havener, and J.F. Liang, Appl. Phys. Lett. 87 (2005) 113504
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Beam purification by photodetachment in RFQ Ion Cooler

Buffer gas 

Ion beam

10-6 Torr 10-6 Torr

10-4 Torr

10-1 - 10-2 Torr

DecelerationRe-acceleration
RF Quadrupole

Laser beam

Negative Ion EA (eV) Transmission (%)
O 1.461 24 ±

 

2
F 3.399 36 ±

 

2
Ni 1.156 52 ±

 

3
S 0.661 49 ±

 

3
Cl 3.617 54 ±

 

2
Cu 1.228 52 ±

 

2

90% 56Co¯
10% 56Ni ¯

1% 56Co¯
99% 56Ni ¯

99.9 % neutralization of Co
22 % neutralization of Ni
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Collaborations for ISOL development

•
 

Mainz, TRIUMF (laser ion source, Ti:Sapphire lasers)
•

 
Legnaro - SPES (UC target tests, target characterization)
–

 

Plan to test a UC target with carbon nanotubes in Spring 2011

•
 

ISOLDE (high density UC target tests – October, 2010)
•

 
ORNL Isotopes program (cross-section and branching ratio 
measurements)

•
 

LLNL (novel actinide materials for RIB production)
•

 
MSU (EBIT charge breeder)
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Injector for Radioactive Ion Species 2 (IRIS2)

• IRIS2 construction is complete
• $5 M budget
• Awaiting final RIB 

commissioning



Experimental System Upgrades
•

 

New/Improved experimental tools 
–

 

LeRIBSS 
•

 

Addition to decay spectroscopy capability
•

 

Beam direct from IRIS target-ion source, positive ions, uses isobar separator
•

 

Decay spectroscopy program is attracting numerous students

–

 

ORRUBA silicon array
•

 

Benefits from NNSA Stockpile Stewardship program (Rutgers/ORAU) 
•

 

Close collaboration with HRIBF astrophysics group
•

 

Large group of students

•

 

Additional tools under development
– MTAS: total absorption spectrometer
– VANDLE and 3Hen neutron arrays
– ORISS – multi-pass time of flight  isomer separator and spectrometer

•

 

GRETINA (plan to host this detector starting in late 2012)
– Opportunity to host national facility for gamma spectroscopy
–

 

Opportunity to collaborate with leading outside experts in this area
LeRIBSS

RMS/CLARION
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Driver Accelerator Upgrade Proposal

•
 

Replace ORIC with a commercial cyclotron
–

 
One possible solution is the 70 MeV machine manufactured by IBA

–
 

Better performance than any ORIC upgrade scenario
•

 

Large increase in RIB production rates (combined with target development)
•

 

Much improved reliability (effect on both p- and n-rich beams)
•

 

Lower operating cost (15% of ORIC)
–

 
Offers medical isotope R&D option (dual extraction)

–
 

No new construction, except for the isotope program

Machine Specifications (courtesy of IBA)
–

 

Multiple beam capability, variable energy
–

 

750 μA proton, variable up to 70 MeV, dual port, H¯ with foil extraction
–

 

>50 μA deuteron, variable up to 35 MeV, dual port, D¯ with foil extraction
–

 

~50 μA alpha, fixed at 70 MeV, single port, 4He++ with deflector extraction
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• in novae, new reaction rate increases synthesis of 18F by
factor of 1.6 in some models, reduces uncertainties 
from factor of 15 to factor of ~ 2.5 

• in X ray bursts, new reaction rate changes 
synthesis of 17O by factor of 10, and reduces 
uncertainties from factor of 100 to factor of ~ 5. 

nova burning

Pioneering nuclear astrophysics studies 
First direct measurement of 17F(p,γ)
and 18F synthesis

Ph.D. Thesis of Kelly Chipps, Colorado School of Mines

•

 

J.F. Liang et al.,  Phys. Lett. B 681, 22 (2009): Coulomb dissociation of 17F
•

 

G. Hagen et al., Phys. Rev. Lett. 104, 182501 (2010): Ab Initio coupled-cluster 
computation of the 17F proton halo state
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134134Te(d,p)Te(d,p)135135TeTe

•

 

132Sn(d,p)133Sn [Kate Jones et al. 
Nature 465(2010)454]

–

 

Observed new state at 1408 keV
–

 

Normalized angular distributions for 
g.s. and 854 keV states

–

 

Indicates l=3 transfer for g.s. (as 
expected)

–

 

compatible with l=1 state for 854 keV 
state

• 130Sn(d,p)131Sn [Ray Kozub et al.]
–

 

Previously unobserved states
–

 

Relative locations very similar to 
those in 133Sn

–

 

Significant astrophysical impact

• 134Te(d,p)135Te [Steve Pain et al.]
–

 

Single particle strengths more 
fragmented 

–

 

Have preliminary candidate for f5/2
strength (1.8 MeV)

Pioneering nuclear astrophysics studies 
Rapid neutron capture process (d,p) studies

132132Sn(d,p)Sn(d,p)133133SnSn
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•

 

J.A. Winger et  al., Phys. Rev. Lett. 102, 142502 (2009): β-delayed neutron branching 
ratios for nuclei near doubly magic 78Ni 

•

 

J.A. Winger et  al., Phys. Rev. C 81, 044303 (2010): possible new spherical subshell 
closure at N=58 created by the nearly degenerated ν3s1/2 and ν2d5/2 orbitals

•

 

S. V. Ilyushkin et al., Phys. Rev. C 80, 054304 (2009): π1f5/2 g.s. in  77Cu
•

 

S. V. Ilyushkin et al., submitted to Phys. Rev. C: β

 

decay studies of 75Cu and the 
structure of 75Zn 

β-decay Studies in the heavy Cu isotopes

RIB Half-live 
(sec)

Intensity 
(pps)

75Cu 1.22 2000
76Cu 0.65 150
77Cu 0.46 20
78Cu 0.35 1.5
79Cu 0.19 0.13
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