Nuclear structure in ¹³²Sn region with new generation RIBs

Angela Gargano

L. Coraggio (Napoli)

A. Covello (Napoli)

N. Itaco (Napoli)

T.T.S. Kuo (Stony Brook)

SPES2010 International Workshop Legnaro - 2010

					RIBs	Do occolor	atad							_	RIBs Boy	accolorated		
Elem	nent A	Z	Ν	I T1/2	260keV	Re-accelera	aleu	May	Γ/Λ	Element	Α	Ζ	Ν	$T1/2_{26}$		accelerateu	Max	E / A
				c	200110	RIBs	a+	IVIAX						<u>د</u> ر		RIBs a+	IVIAX	L/A
				3	1+		-1							3	1+	4		
										Sb	132	51	81	1.67E+02	1,90E+09	3,80E+07	21	11.5
In	114	49	65	7.19E+01	4,61E+05	9,22E+03	20	12	SIS+LIS s	Sb	133	51	82	1.50E+02	8,06E+08	1,61E+07	21	11.0
In	115	49	66	1.39E+22	4,23E+05	8,46E+04	20	12	_	Sb	134	51	83	7.80E+01	3.09E+07	6.19E+05	21	11.0
In	116	49	67	1.41E+01	7,38E+06	1,48E+05	20	12		50	130	51	04	9.205-04	2.055405	2,882405	21	10.7
In	117	49	68	2.59E+03	8,29E+07	1,66E+06	20	11,8		Sh	137	51	86	2.065-01	1,485+05	2 975403	21	10.5
In	118	49	69	5.00E+00	5,35E+07	1,07E+06	20	11,6		Sb	138	51	87	2.26E-01	1.84E+04	2,372103		10.0
In	119	49	70	1.44E+02	5,88E+08	1,18E+07	20	11,4		-								
In	120	49	71	3.08E+00	2,27E+08	4,34E+06	20	11,4		Те	127	52	75	3.37E+04	1,75E+09	3,50E+07	21	11.7
In	121	49	72	2.31E+01	1,32E+09	2,64E+07	20	11,4		Te	128	52	76	6.94E+31	6,24E+09	1,25E+08	21	11.7
In	122	49	73	1.50E+00	3,51E+08	7,02E+06	20	11,2		Te	129	52	77	4.18E+03	1,05E+10	2,10E+08	21	11.6
In	123	49	74	5.98E+00	1,08E+09	2,16E+07	20	11,2		те	130	52	78	2.49E+28	3,22E+10	6,44E+08	21	11.5
In	124	49	75	3.11E+00	6,67E+08	1,33E+07	20	11,2		Te	131	- 52	-79	1.505+03	2,375+10	4,745+08	- 21	11.5
In	125	49	76	2.36E+00	4,25E+08	8,50E+06	20	11		Те	132	52	80	2.77E+05	4,21E+10	8,425+08	21	11.5
In	126	49	77	1.60E+00	2,00E+08	4,00E+06	20	11			124	- 24	82	2.545402	1.175+10	3,225408	21	11.0
In	127	49	78	1.09E+00	7,58E+07	1,52E+06	20	11		Te	135	52	83	1.906+01	1.375+09	2,332+03	21	10.7
In	128	49	79	8.40E-01	2,53E+07	5,07E+05	20	11		Те	136	52	84	1.75E+01	5.48E+08	1.10E+07	21	10.7
In	129	49	80	6.10E-01	5,44E+06	1,09E+05	20	10,9		Те	137	52	85	2.49E+00	8,39E+07	1,68E+06	21	10.6
In	130	49	81	3.20E-01	7.72E+05	1.546+04	20	10.9		те	138	52	86	1.40E+00	2,15E+07	4,30E+05	21	10.0
In	131	49	82	2.82E-01	1,38E+05	2,76E+03		10,9		те	139	52	87	3.51E-01	2,16E+06	4,32E+04	22	11.0
In	132	49	83	2.01E-01	9,89E+04	1,98E+03	_			те	140	52	88	2.46E-01	2,76E+05	5,51E+03	22	10.9
In	133	49	84	1.80E-01	1,02E+04		_	_		те	141	52	89	2.65E-01	1,77E+03			
6.	174		74	0.745+04	2.025.00	4.045407	24	43.0	115		125	53	72	5.135+06	2.155+05	4 305+04	21	11.7
Sn Sn	121	50	72	1.125407	1 225409	3 500100	21	11.0	LIS SOUR	1	126	53	73	1.13E+06	1.83E+07	3.66E+05	21	11.7
Se	125	50	78	0.335405	2,505+10	2,005409	24	11.7		1	128	53	75	1.50E+03	3,11E+08	6,22E+06	21	11.7
Se	125	50	76	3 465443	4 245440	7,002108	21	44.7		1	129	53	76	4.95E+14	4,19E+09	8,38E+07	21	11.6
an Co	120	50	70	3.100712	4,216+10	0,425100	24	44.7		1	130	53	77	4.45E+04	1,62E+10	3,24E+08	21	11.5
Se .	430		70	2 545402	3,052+10	6,100100	24	44.7		1	131	53	78	6.93E+05	5,47E+10	1,09E+09	21	11.5
Sn	120	50	79	1.346402	1 755+10	3,505408	21	11.7		1	132	53	79	8.26E+03	9,15E+10	1,83E+09	21	11.5
Se	120	50	80	2.346102	7.995409	4 505100	21	11.5		1	133	53	80	7.49E+04	1,89E+11	3,78E+09	21	11.0
So.	131	50	04	5.005+04	2.435409	6 935107	24	11.5			134	53	81	3.156+03	1,35E+11 1,72E+11	2,726+09	21	11.0
Sn Co	131		61	3.6025404	4 805400	0,050107	21	44.0			135	53	83	2.376404	1.045+10	2 085408	21	10.7
Sn	122	50	02	1.455+00	1,305409	2 765406	21	11.4		1	137	53	84	2.45E+01	2.18E+09	4.37E+07	21	10.6
So	124	50	9.4	1.125+00	2,495407	4 005105	21	11.0		1	138	53	85	6.49E+00	3,44E+08	6.89E+06	21	10.0
So	124	50	24	2 505-01	2,452405	6 21 5402	21	11.0		1	139	53	86	2.29E+00	5,94E+07	1,19E+06	22	11.0
Se	135	50	0.5	9 305-02	4 995403	0,212705	21	11.0		1	140	53	87	8.60E-01	9,17E+06	1,83E+05	22	10.9
an	130	30	60	5.206-02	4,335703					1	141	53	88	4.30E-01	1,40E+05	2,80E+04	22	10.7
Sh	110	51	62	1 375405	1 305405	3.005403	21	12.0	LIS source	1	142	53	89	2.00E-01	1,22E+05	2,44E+03	22	10.7
Sh	120	51	60	9 535403	9,215405	1 646404	21	12.0	612 20010	· ·	143	53	90	2.788-01	1,24E+04	2,49E+02	22	11.5
55	120		74	3.355105	4 255107	9 705105	24	11.0		No.	4.37			2445105	2445104		24	44.7
Sh	122	51	71	3.205+05	6.87E+02	1 375407	21	11.5		Xe	127	54	75	3.148+06	3,116+04	6,228402	21	11.7
Sh	124	54	74	9 705±07	1 925409	3 000107	21	11.0		Xe	135	54	81	3.29E+04	1.965+10	3,922+08	21	11.5
Sh	122	54	74	1.085+05	4 525409	9.055407	24	11.7		Xe	137	34	83	2 295+02	9.955+09	1.975408	21	10.7
Sh	427	54	75	2 225105	9,352109	1.675402	24	11.7		Xe	138	54	84	8.456+02	1,01E+10	2,02E+08	21	10.5
Sh	436	34	78	3.336700	1 105+10	3 205400	21	11.7		Xe	139	54	85	3.97E+01	2,15E+09	4,30E+07	21	10.5
Sh	128	51	78	1 385404	1 395+10	2,562708	21	11.7		Xe	140	54	86	1.36E+01	6,72E+08	1,34E+07	21	10.0
Sh	130	51	79	2 375+02	1.035+10	2.055408	21	11.5		Xe	141	54	87	1.73E+00	1,19E+08	2,38E+06	22	11.0
Sh	130	34	20	4 305103	C 055400	4 345100	24	11.5		Xe	142	54	88	1.22E+00	3,74E+07	7,49E+05	22	10.9
20	151	21	80	2.30CTUS	0,000109	1,210700	21	11.5		Xe	143	54	89	3.00E-01	5,34E+06	1,07E+05	22	10.7

INFN A. Gargano

SPES2010 International Workshop Legnaro - 2010

Outline

Some examples of recent experiments in ¹³²Sn region

- Nuclei in ¹³²Sn region within the realistic shell-model approach
- Theoretical framework
- Some results in the perspective of new generation RIBs

(keV)	·	(ps)	(keV)	2 nnai	- ,			-	(W.u.)	(μ_N^2)
847	21	3.0(2) ^a	847	01	1000(9)	0.119(7)	-0.006(9)		15.3(11) ^a	
1614	22	1.9(1)	767	21+	4.70(5)	-0.262(8)	-0.01(1)	-1.5(2)	20(2)	0.015(1)
			1614	01	4.93(8)	0.28(1)	-0.06(2)		0.74(5)	
1731	41+	3.2(2) ^a	884	21	1.79(2)				11.6(8) ^a	
1920	31		1073	21	0.355(5)			0.16(2) ^a		
1947	23	0.23(2)	1100	21+	3.44(4)	0.27(1)	0.01(1)	0.08(2)	0.56(4)	0.30(2)
			1947	01	0.515(9)	0.306 ^b	-0.074 ^b		0.72(7)	
2116	(4)		1269	21						
2263	24	0.54(4)	1415	21	0.73(1)	0.33(2)	0.07(2)	0.14(2) 1.6(1)	0.14(1) ^c 5.6(4) ^d	0.041(3) ^c 0.012(1) ^d
			2263	01	0.63(1)	0.322 ^b	-0.091 ^b		0.63(6)	0.012(1)
2867	(0-4)		921	23	0.25(4)					
			1254	22	0.35(6)					
			2020	21	0.38(6)					

Napoli

INFN

A. Gargano

Restoration of the N = 82 Shell Gap from Direct Mass Measurements of ^{132,134}Sn

M. Dworschak,^{1,*} G. Audi,² K. Blaum,^{1,3,4} P. Delahaye,⁵ S. George,^{1,3} U. Hager,⁶ F. Herfurth,¹ A. Herlert,⁵ A. Kellerbauer,⁴ H.-J. Kluge,^{1,7} D. Lunney,² L. Schweikhard,⁸ and C. Yazidjian¹

A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of ¹³⁴Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N = 82, previously considered to be a case of "shell quenching." In fact, the new shell gap value for the short-lived ¹³²Sn is larger than that of the doubly magic ⁴⁸Ca which is stable. The N = 82 shell gap has considerable impact on fission recycling during the *r* process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides.

INFN

Vol 465 27 May 2010 doi:10.1038/nature09048 nature The magic nature of ¹³²Sn explored through the single-particle states of ¹³³Sn @ HRIBE -Oak Ridge K. L. Jones^{1,2}, A. S. Adekola³, D. W. Bardayan⁴, J. C. Blackmon⁴, K. Y. Chae¹, K. A. Chipps⁵, J. A. Cizewski², L. Erikson⁵, C. Harlin⁶, R. Hatarik², R. Kapler¹, R. L. Kozub⁷, J. F. Liang⁴, R. Livesay⁵, Z. Ma¹, B. H. Moazen¹, C. D. Nesaraja⁴, F. M. Nunes⁸, S. D. Pain², N. P. Patterson⁶, D. Shapira⁴, J. F. Shriner Jr⁷, M. S. Smith⁴, T. P. Swan^{2,6} & J. S. Thomas⁶ Proton CD2 target 2 ¹³²Sn S heam Table 1 Properties of the four single-particle states populated by the 132Sn(d,p)133Sn reaction $C^{2}(fm^{-1})$ P^{n} E_x (keV) Configuration S ¹³²Sn_{gs} ⊗ ν_{f7/2} 0 7/2- 0.86 ± 0.16 0.64 ± 0.10 ¹³²Sn_{gs} ⊗ v_{p3/2} 854 3/2- 0.92 ± 0.18 5.61 ± 0.86 ¹³²Sn_{es} ⊗ $1,363 \pm 31$ 1.1 ± 0.3 2.63 ± 0.43 $V_{01/2}$ ¹³²Sn_{gs} \otimes V_{f5/2} $(9 \pm 2) \times 10^{-4}$ 2.005 1.1 ± 0.2 (572) G-Value (Mev)

INFN

Legnaro - 2010

• Choice of the nucleon-nucleon potential

CD-Bonn, Argonne V_{18} , Chiral potentials,...

all modern NN potentials fit equally well the deuteron properties and the NN scattering data up the inelastic threshold $\chi^2/N_{data} \sim 1$

these potentials cannot be used directly in the derivation of V_{eff} due to their strong short-range repulsion, but a

Renormalization procedure is needed

Renormalization of the NN interaction

 $V_{\text{low-k}}$ approach: construction of a low-momentum NN potential $V_{\text{low-k}}$ confined within a momentum-space cutoff $k \leq <$

Derived from the original $V_{\rm NN}$ by integrating out the high-momentum components of the original $V_{\rm NN}$ potential down to the cutoff momentum Λ

V_{low-k} decouples high- and low-energy degrees of freedom preserves the physics of the original NN interaction #the deuteron binding energy

***** scattering phase-shifts up to the cutoff momentum Λ

S. Bogner,T.T.S. Kuo,L. Coraggio,A. Covello,N. Itaco, Phys. Rev C 65, 051301(R) (2002)

- S. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)
- L. Coraggio et al, Prog. Part. Nucl. Phys. 62 (2009) 135

Two-body effective interaction \hat{Q} - **box** + folded diagram method

developed within the framework of the time-dependent perturbative approach by Kuo and co-workers

$$V_{eff} = \hat{Q} + \sum_{i=1}^{\infty} F_i$$

collection of irreducible valence-linked diagrams with V_{low-k} replacing V_{NN} in the interaction vertices

Diagramatic expression of the **Q**-box

INFN

A realistic effective interaction

- is constructed for two valence particles
- is defined
- -in the nuclear medium
- -in a subspace of the Hilbert space

\rightarrow accounts perturbatively for

- configurations excluded from the chosen model space
- excitations of the core nucleons

Results

14406

0.321 1

\$-: 100.00N

\$-a: 14,20%

14530

188 MI

Binding energies X -

0.235 \$

b-: 100.00%

8-a: 43.00%

1460e

146 MS

146 MS

\$~: 100.00N

\$-a 25 10N

147%e

0.105

- **Excitation energies and angular** × momenta
- **Electromagnetic properties** X
- × Single particle properties

Napoli

Legnaro - 2010

Predictions for electromagnetic properties in ¹³⁴Sn

4

B(E2;4₁
$$\rightarrow$$
2₁) = 67 e²fm⁴
B(E2;2₂ \rightarrow 0) =14 e²fm⁴
B(E2;2₂ \rightarrow 2₁) = 118 e²fm
B(M1;2₂ \rightarrow 2₁) = 0.02 μ^{2}_{N}
Q(2₁) = -1.3 efm²
Q(2₂) = -2.8 efm²
 μ (2₁) = -0.56 μ_{N}
 μ (2₂) = -0.25 μ_{N}

1

Napoli

1

SPES2010 International Workshop Legnaro - 2010

Napoli

1

Legnaro - 2010

N/Z	1.68	1.72	1.76	1.80			
A	¹³⁴ Sn	¹³⁶ Sn	¹³⁸ Sn	¹⁴⁰ Sn			
BE Calc relative to ¹³² Sn	5.92	11.83	17.68	23.41			
BE Expt relative to ¹³² Sn	5.916±0.150*						
S _n Calc	3.55	3.55	3.53	3.50			
S _n Expt	3.545±0.152						
¹²⁴ Sn(stable) with N/Z=1.48 BE/A=8.46							

* M. Dworschak et al. Phys. Rev. Lett. 100, (2008) 072501 Old value (Fogelberg et al., 1999): 6.365 MeV →neutron shell gap at N= 82 <u>restored</u>

1

¹³⁶Te ¹³²Sn + 2v +2n

¹³⁶Te Coulex (Oak Ridge)

B(E2; $2^+ \rightarrow 0^+$) = 206 33 e²fm⁴ New prelimary measurement ~300

Theory $B(E2;0^+ \rightarrow 2^+) = 367 e^2 fm^4$ $e_{eff}(n) = 0.70e$ $e_{eff}(v) = 1.55e$

1

Structure of the yrast states

$$|^{136}$$
Te; g.s $\rangle = 0.85|^{134}$ Sn; g.s. $\rangle |^{134}$ Te; g.s. $\rangle + \cdots$,

¹³⁶Te;
$$2_1^+$$
 = 0.73|¹³⁴Te; $g.s.$ |¹³⁴Sn; 2_1^+ + 0.36|¹³⁴Sn; $g.s.$ |¹³⁴Te; 2_1^+ + · · ·

¹³⁶Te;
$$4_1^+$$
 = 0.71|¹³⁴Te; $g.s.$ | ¹³⁴Sn; 4_1^+ + 0.28|¹³⁴Sn; $g.s.$ | ¹³⁴Te; $|4_1^+$ + · · ·

136
Te; 6_1^+ = 0.78 $|^{134}$ Te; $g.s.$ $|^{134}$ Sn; 6_1^+ - 0.21 $|^{134}$ Sn; $g.s.$ $|^{134}$ Te; 6_1^+ + ...

B(E2;4₁
$$\rightarrow$$
2₁) = 460 e²fm⁴
B(E2;6₁ \rightarrow 4₁) = 310 e²fm⁴
Q(2₁) = -23 efm²
 μ (2₁) = 0.20 μ _N

A. Gargano

NapolNapoli

INF

B(E2;2₂ \rightarrow 0) = 24 e²fm⁴ B(E2;2₂ \rightarrow 2₁) = 360 e²fm⁴ B(M1;2₂ \rightarrow 2₁) = 0.18 μ^{2}_{N} B(E2;2₃ \rightarrow 0) = 34 e²fm⁴ B(E2;2₃ \rightarrow 2₁) = 50 e²fm⁴ B(M1;2₃ \rightarrow 2₁) = 0.19 μ^{2}_{N}

$$^{136}\text{Te}; 2_2^+\rangle = 0.61|^{134}\text{Te}; g.s.\rangle|^{134}\text{Sn}; 2_2^+\rangle - 0.42|^{134}\text{Te}; g.s.\rangle|^{134}\text{Sn}; 2_1^+\rangle + \cdots$$

¹³⁶Te; 2_3^+ = 0.78|¹³⁴Sn; g.s. |¹³⁴Te; 2_1^+ > - 0.31|¹³⁴Te; g.s. |¹³⁴Sn; 2_1^+ > + · · ·

mixed-symmetry state (antisymmetric with respect to interchanges between proton and neutron pairs)

n IBM-2
$$\left[|S_v \times D_\pi \rangle \right] - \left[|S_\pi \times D_v \rangle \right] / \sqrt{2}$$

SPES2010 International Workshop Legnaro - 2010

Evolution of the proton single-particle states

A. Gargano Napoli

INFN

1

¹³⁷Sb: Σ S(1/2)=0.24; Σ S(3/2)=0.16

(the sum includes states up to 2.8 MeV)

Evolution of the neutron single particle states

135Te 5/2 and the 9/2 states with the largest single-particle strenght do not correspond to

the yrast states $(5/2^{-})_{1} \rightarrow E= 1.35 \text{ MeV} S=0.12$

(9/2⁻)₁ → E=1.302MeV S=0.18

Legnaro - 2010

1

Summary

Realistic shell-model calculations are a reliable tool for shell structure studies
its predictions may stimulate and be helpful to future experiments

A lot of data are still missing in ¹³²Sn, for "exotic" as well as for "less exotic" nuclei. Present facilities can still produce interesting measurements, but with the future RIBs facilities a further step cn be done towards a better comphension of nucler structure

The new data will be of key importance to constrain nuclear model to clarify the concept of mean field, shell structure, to investigate the relevant features of the effective interactions and their connections with the "bare" potential

LOI@SPE	S							
B. Melon	nb-Excitation Measurements of Radioactive Ions (134Sn, 136Te,)							
R. Lozeva	clear Moment Studies with Galileo (129,131In, 134Sn, 134Te,)							
B. Szpak	Structure of Sb Nuclei around 132Sn as a Testing Ground for Realistic Shell Model Interactions (^{132,134} Sb)							
S. Mengoni	Direct Reactions with SPES Beams: Nuclear Magicity at Z~50 N~82 (^{123,131,133,134} Sn, ¹³¹ In, ¹³³ Sb)							
G. Rainovsky	Study of Quadrupole Isovector Valence-Shell Excitations of Exotic Nuclei at SPES (¹³⁸ Xe, ¹⁴⁰ Ba, ^{132,136} Te, ^{128,132} Cd)							

